留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波高非线性概率分布高阶谱数值模型研究

冯司宇 马小舟 董国海

冯司宇, 马小舟, 董国海. 波高非线性概率分布高阶谱数值模型研究[J]. 海洋学报, 2019, 41(3): 44-51. doi: 10.3969/j.issn.0253-4193.2019.03.005
引用本文: 冯司宇, 马小舟, 董国海. 波高非线性概率分布高阶谱数值模型研究[J]. 海洋学报, 2019, 41(3): 44-51. doi: 10.3969/j.issn.0253-4193.2019.03.005
Feng Siyu, Ma Xiaozhou, Dong Guohai. Study on high order spectral numerical model of wave height nonlinear probability distribution[J]. Haiyang Xuebao, 2019, 41(3): 44-51. doi: 10.3969/j.issn.0253-4193.2019.03.005
Citation: Feng Siyu, Ma Xiaozhou, Dong Guohai. Study on high order spectral numerical model of wave height nonlinear probability distribution[J]. Haiyang Xuebao, 2019, 41(3): 44-51. doi: 10.3969/j.issn.0253-4193.2019.03.005

波高非线性概率分布高阶谱数值模型研究

doi: 10.3969/j.issn.0253-4193.2019.03.005
基金项目: 国家重点研发计划(2017YFC1404200);国家自然科学基金(51679031,51720105010);工业信息化部高技术船舶项目;中央高校基本科研业务费(DUT16TD08)

Study on high order spectral numerical model of wave height nonlinear probability distribution

  • 摘要: 由于波浪的调制不稳定以及非线性波-波相互作用等因素的存在,波浪的分布会偏离线性假设下瑞利分布的结果。通过使用高阶谱模型对不同初始条件下波浪数值模拟。对统计得到的波高与线性理论下的瑞利分布和考虑非线性下改进的埃奇沃思-瑞利(MER)分布和依据Gram-Charlier展开的分布(GC分布)进行对比。结果表明,深水条件下波浪传播过程中偏度值变化较小,而峰度值出现增长。在较小有效波高值的波况下波高分布符合瑞利分布,但随着有效波高值的增加,波浪的非线性增强,波高分布与考虑非线性影响下的GC和MER分布结果相符。宽谱下的波高分布偏离瑞利分布的程度小于窄谱的情况,波高分布更接近瑞利分布的结果。
  • Rice S O. Mathematical analysis of random noise[J]. The Bell System Technical Journal, 1944, 23(3): 282-332.
    Kinsman B. Surface waves at short fetches and low wind speeds: a field study[R]. Chesapeake Bay Institute, Johns Hopkins University, 1960.
    Longuet-Higgins M S, Deacon G E R. The statistical analysis of a random, moving surface[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1957, 249(966): 321-387.
    Tayfun M A. On narrow-band representation of ocean waves: 1. Theory[J]. Journal of Geophysical Research, 1986, 91(C6): 7743-7752.
    Tayfun M A. On narrow-band representation of ocean waves: 2. Simulations[J]. Journal of Geophysical Research, 1986, 91(C6): 7753-7759.
    Janssen P A E M. Nonlinear four-wave interactions and freak waves[J]. Journal of Physical Oceanography, 2003, 33(4): 863-884.
    Mori N, Yasuda T. Effects of high-order nonlinear interactions on unidirectional wave trains[J]. Ocean Engineering, 2002, 29(10): 1233-1245.
    Tayfun M A, Fedele F. Wave-height distributions and nonlinear effects[J]. Ocean Engineering, 2007, 34(11/12): 1631-1649.
    Onorato M, Osborne A R, Serio M, et al. Modulational instability and non-Gaussian statistics in experimental random water-wave trains[J]. Physics of Fluids, 2005, 17(7): 078101.
    Mori N, Onorato M, Janssen P A E M, et al. On the extreme statistics of long-crested deep water waves: theory and experiments[J]. Journal of Geophysical Research, 2007, 112(C9): C09011.
    Tayfun M A. Distributions of envelope and phase in wind waves[J]. Journal of Physical Oceanography, 2008, 38(12): 2784-2800.
    Cherneva Z, Guedes Soares C. Non-Gaussian wave groups generated in an offshore wave basin[J]. Journal of Offshore Mechanics and Arctic Engineering, 2012, 134(4): 041602.
    Alkhalidi M A, Tayfun M A. Generalized Boccotti distribution for nonlinear wave heights[J]. Ocean Engineering, 2013, 74: 101-106.
    Petrova P G, Guedes Soares C. Distributions of nonlinear wave amplitudes and heights from laboratory generated following and crossing bimodal seas[J]. Natural Hazards and Earth System Sciences, 2014, 14(5): 1207-1222.
    Zhang H D, Soares C G, Onorato M. Modelling of the spatial evolution of extreme laboratory wave crest and trough heights with the NLS-type equations[J]. Applied Ocean Research, 2015, 52: 140-150.
    Wang Yingguang. Transformed Rayleigh distribution of trough depths for stochastic ocean waves[J]. Coastal Engineering, 2018, 133: 106-112.
    Dommermuth D G, Yue D K P. A high-order spectral method for the study of nonlinear gravity waves[J]. Journal of Fluid Mechanics, 1987, 184: 267-288.
    Ducrozet G, Bonnefoy F, Le Touze D, et al. 3D HOS Simulations of extreme waves in open seas and of their reproducing in a wavetank[C]//Proceedings of European Geosciences Union General Assembly. Vienne, Austria: European Geosciences Union, 2006.
    Ducrozet G, Bonnefoy F, Le Touzé D, et al. HOS-ocean: open-source solver for nonlinear waves in open ocean based on high-order spectral method[J]. Computer Physics Communications, 2016, 203: 245-254.
  • 加载中
计量
  • 文章访问数:  465
  • HTML全文浏览量:  7
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-06-15

目录

    /

    返回文章
    返回