留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个覆盖太平洋区域的地震海啸波幅预报系统及检验

王宗辰 原野 王培涛 高义 李宏伟 侯京明

王宗辰, 原野, 王培涛, 高义, 李宏伟, 侯京明. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验[J]. 海洋学报, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001
引用本文: 王宗辰, 原野, 王培涛, 高义, 李宏伟, 侯京明. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验[J]. 海洋学报, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001
Wang Zongchen, Yuan Ye, Wang Peitao, Gao Yi, Li Hongwei, Hou Jingming. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001
Citation: Wang Zongchen, Yuan Ye, Wang Peitao, Gao Yi, Li Hongwei, Hou Jingming. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001

一个覆盖太平洋区域的地震海啸波幅预报系统及检验

doi: 10.3969/j.issn.0253-4193.2019.02.001
基金项目: 国家重点研发计划(2016YFC1401501);国家自然科学基金项目(41806045)。

Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean

  • 摘要: 基于线性长波方程和缓变地形近岸波幅格林公式建立了覆盖整个太平洋区域的准实时地震海啸波幅预报系统。系统利用了GPU并行加速技术,可在90 s之内完成太平洋区域32 h的海啸传播计算和中国沿海城市岸段的波幅特征值预报。筛选了自2006年以来的9次发生在太平洋区域,矩震级(Mw)超过8.0且资料丰富的历史地震海啸事件,对预报系统进行了后报检验。结果表明,线性长波模型能够很好的模拟海啸在大洋中的传播过程;格林公式能够较为准确的估算缓变水深和开阔地形条件下的近岸海啸最大波幅,波幅预警准确率可达80%,基本满足海啸预警需求。以2011年日本Mw9.0地震海啸为例,评估了该系统对中国城市岸段的波幅预警能力,结论基本合理。需要注意的是,利用该系统计算对海啸源特别敏感的近场海啸波幅可能产生较大偏差。提出了若要进一步提高定量海啸波幅预警的准确率,可从以下两个方面加强研究和业务实践:一是采用多数据联合反演方法提升海啸源的精度;二是提高格林公式的适用性,或者构建高效的近岸精细化海啸数值预报系统。
  • Bernard E, Titov V. Evolution of tsunami warning systems and products[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2053):20140371.
    宋昱莹. 沿海重大工程场址的地震海啸危险性分析方法研究[D]. 哈尔滨:中国地震局工程力学研究所, 2014. Song Yuying. Probabilistic tsunami hazard analysis on Chinese coastal giant infrastructure site[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2014.
    于福江, 原野, 赵联大, 等. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 2011, 56(3):239-246. Yu Fujiang, Yuan Ye, Zhao Lianda, et al. Evaluation of potential hazards from teletsunami in China:tidal observations of a teletsunami generated by the Chile 8.8Mw earthquake[J]. Chinese Science Bulletin, 2011, 56(3):239-246.
    王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9):3088-3096. Wang Peitao, Yu Fujiang, Zhao Lianda, et al. Numerical analysis of tsunami propagating generated by the Japan Mw 9.0 earthquake on Mar. 11 in 2011 and its impact on China coasts[J]. Chinese Journal of Geophysics, 2012, 55(9):3088-3096.
    Furumoto A S, Tatehata H, Morioka C. Japanese tsunami warning system[J]. Science of Tsunami Hazards, 1999, 17(2):85-105.
    Greenslade D J M, Simanjuntak M A, Burbidge D, et al. A first-generation real-time tsunami forecasting system for the Australian Region[R]. Melbourne:Bureau of Meteorology, 2007.
    Greenslade D J M, Simanjuntak M A, Allen S C R. An enhanced tsunami scenario database:T2[R]. CAWCR Technical Report No. 014, Melbourne:Bureau of Meteorology, 2009.
    Gica E, Spillane M C, Titov V V, et al. Development of the forecast propagation database for NOAA's short-term inundation forecast for tsunami (SIFT)[R]. NOAA Technical Memorandum OAR PMEL-139, Seattle, WA:U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory, 2008.
    Schindelé F, Gailler A, Hébert H, et al. Implementation and challenges of the tsunami warning system in the western Mediterranean[J]. Pure and Applied Geophysics, 2015, 172(3/4):821-833.
    Steinmetz T, Raape U, Teßmann S, et al. Tsunami early warning and decision support[J]. Natural Hazards and Earth System Science, 2010, 10(9):1839-1850.
    Setiyono U, Gusman A R, Satake K, et al. Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia[J]. Pure and Applied Geophysics, 2017, 174(8):3219-3235.
    Wang D, Walsh D, Becker N, et al. A methodology for tsunami wave propagation forecast in real time[C]//American Geophysical Union, Fall Meeting, 2009. Washington:AGU, 2009.
    Wang Dailin, Becker N C, Walsh D, et al. Real-time forecasting of the April 11, 2012 Sumatra tsunami[J]. Geophysical Research Letters, 2012, 39(19):L19601.
    Jamelot A, Reymond D. New tsunami forecast tools for the French Polynesia tsunami warning system part Ⅱ:numerical modelling and tsunami height estimation[J]. Pure and Applied Geophysics, 2015, 172(3/4):805-819.
    Lin S C, Wu T R, Yen E, et al. Development of a tsunami early warning system for the South China Sea[J]. Ocean Engineering, 2015, 100:1-18.
    Synolakis C E, Bernard E N, Titov V V, et al. Validation and verification of tsunami numerical models[J]. Pure and Applied Geophysics, 2008, 165(11/12):2197-2228.
    Allen S C R, Greenslade D J M. Indices for the objective assessment of tsunami forecast models[J]. Pure and Applied Geophysics, 2013, 170(9/10):1601-1620.
    Greenslade D J M, Annunziato A, Babeyko A Y, et al. An assessment of the diversity in scenario-based tsunami forecasts for the Indian Ocean[J]. Continental Shelf Research, 2014, 79:36-45.
    Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154.
    Kanamori H, Rivera L. Source inversion of W phase:speeding up seismic tsunami warning[J]. Geophysical Journal of International, 2008, 175(1):222-238.
    Hayes G P, Rivera L, Kanamori H. Source inversion of W-phase:real-time implementation and extension to low magnitudes[J]. Seismological Research Letters, 2009, 80(5):817-822.
    Duputel Z, Rivera L, Kanamori H, et al. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7):535-539.
    Duputel Z, Rivera L, Kanamori H, et al. W phase source inversion for moderate to large earthquakes (1990-2010)[J]. Geophysical Journal International, 2012, 189(2):1125-1147.
    Stirling M, Goded T, Berryman K, et al. Selection of earthquake scaling relationships for seismic-hazard analysis[J]. Bulletin of the Seismological Society of America, 2013, 103(6):2993-3011.
    Blaser L, Krüger F, Ohrnberger M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6):2914-2926.
    Geist E L, Bilek S L. Effect of depth-dependent shear modulus on tsunami generation along subduction zones[J]. Geophysical Research Letters, 2001, 28(7):1315-1318.
    Bilek S L, Lay T. Rigidity variations with depth along interplate megathrust faults in subduction zones[J]. Nature, 1999, 400(6743):443-446.
    Synolakis C E. Green's law and the evolution of solitary waves[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(3):490-491.
    Hayashi Y. Empirical relationship of tsunami height between offshore and coastal stations[J]. Earth, Planets and Space, 2010, 62(3):269-275.
    Reymond D, Okal E A, Hébert H, et al. Rapid forecast of tsunami wave heights from a database of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia[J]. Geophysical Research Letters, 2012, 39(11):L11603.
    Gailler A, Hébert H, Schindelé F. Coastal amplification laws for the French tsunami warning center:numerical modeling and fast estimate of tsunami wave heights along the French Riviera[J]. Pure and Applied Geophysics, 2018, 175(4):1429-1444.
    Tang Liujuan, Titov V V, Bernard E N, et al. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements[J]. Journal of Geophysical Research:Oceans, 2012, 117(C8):C08008.
    Tang Liujuan, Titov V V, Moore C, et al. Real-time assessment of the 16 September 2015 Chile Tsunami and implications for near-field forecast[J]. Pure and Applied Geophysics, 2016, 173(2):369-387.
    Fujii Y, Satake K, Sakai S, et al. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7):815-820.
    于福江, 王培涛, 赵联大, 等. 2010年智利地震海啸数值模拟及其对我国沿海的影响分析[J]. 地球物理学报, 2011, 54(4):918-925. Yu Fujiang, Wang Peitao, Zhao Lianda, et al. Numerical simulation of 2010 Chile tsunami and its impact on Chinese coasts[J]. Chinese Journal of Geophysics, 2011, 54(4):918-925.
    Gica E, Titov V V, Moore C, et al. Tsunami simulation using sources inferred from various measurement data:implications for the model forecast[J]. Pure and Applied Geophysics, 2015, 172(3/4):773-789.
    Burwell D, Tolkova E, Chawla A. Diffusion and dispersion characterization of a numerical tsunami model[J]. Ocean Modelling, 2007, 19(1/2):10-30.
    王培涛, 于福江, 原野, 等. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报, 2016, 59(3):1030-1045. Wang Peitao, Yu Fujiang, Yuan Ye, et al. Effects of finite fault rupture models of submarine earthquakes on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysical, 2016, 59(3):1030-1045.
    Geist E L. Local tsunamis and earthquake source parameters[J]. Advances in Geophysics, 1998, 39:117-209.
    Gica E, Teng M H, Liu P L F, et al. Sensitivity analysis of source parameters for earthquake-generated distant tsunamis[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6):429-441.
    Okal E A, Synolakis C E. Source discriminants for near-field tsunamis[J]. Geophysical Journal International, 2004, 158(3):899-912.
    Ulutas E. The 2011 off the Pacific coast of Tohoku-Oki earthquake and tsunami:influence of the source characteristics on the maximum tsunami heights[C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Tokyo, Japan, 2012.
    Burbidge D, Mueller C, Power W. The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model[J]. Natural Hazards and Earth System Sciences, 2015, 15(10):2299-2312.
    Satake K. Inversion of tsunami waveforms for the estimation of a fault heterogeneity:method and numerical experiments[J]. Journal of Physics of the Earth, 1987, 35(3):241-254.
    Hayes G P. Rapid source characterization of the 2011Mw 9.0 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7):529-534.
    Yamazaki Y, Lay T, Cheung K F, et al. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38(7):L00G15.
    Yokota Y, Koketsu K, Fujii Y, et al. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38(7):L00G21.
    Song Y T, Fukumori I, Shum C K, et al. Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean[J]. Geophysical Research Letters, 2012, 39(5):L05606.
    Wei Yong, Newman R V, Hayes G P, et al. Tsunami forecast by joint inversion of real-Time tsunami waveforms and seismic or GPS data:application to the Tohoku 2011 tsunami[J]. Pure and Applied Geophysics, 2014, 171(12):3281-3305.
    Titov V, Song Y T, Tang L, et al. Consistent estimates of tsunami energy show promise for improved early warning[J]. Pure and Applied Geophysics, 2016, 173(12):3863-3880.
    Okal E A. Seismic parameters controlling far-field tsunami amplitudes:a review[J]. Natural Hazards, 1988, 1(1):67-96.
  • 加载中
计量
  • 文章访问数:  631
  • HTML全文浏览量:  22
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-18
  • 修回日期:  2018-10-23

目录

    /

    返回文章
    返回