留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ROMS模式的南海SST与SSH四维变分同化研究

周超杰 张杰 杨俊钢 徐明明 张庆君

周超杰, 张杰, 杨俊钢, 徐明明, 张庆君. 基于ROMS模式的南海SST与SSH四维变分同化研究[J]. 海洋学报, 2019, 41(1): 32-40. doi: 10.3969/j.issn.0253-4193.2019.01.004
引用本文: 周超杰, 张杰, 杨俊钢, 徐明明, 张庆君. 基于ROMS模式的南海SST与SSH四维变分同化研究[J]. 海洋学报, 2019, 41(1): 32-40. doi: 10.3969/j.issn.0253-4193.2019.01.004
Zhou Chaojie, Zhang Jie, Yang Jungang, Xu Mingming, Zhang Qingjun. 4DVAR assimilation of SST and SSH data in South China Sea based on ROMS[J]. Haiyang Xuebao, 2019, 41(1): 32-40. doi: 10.3969/j.issn.0253-4193.2019.01.004
Citation: Zhou Chaojie, Zhang Jie, Yang Jungang, Xu Mingming, Zhang Qingjun. 4DVAR assimilation of SST and SSH data in South China Sea based on ROMS[J]. Haiyang Xuebao, 2019, 41(1): 32-40. doi: 10.3969/j.issn.0253-4193.2019.01.004

基于ROMS模式的南海SST与SSH四维变分同化研究

doi: 10.3969/j.issn.0253-4193.2019.01.004
基金项目: 国家重点研发计划资助(2016YFC1401800);国家自然科学基金(41576176)。

4DVAR assimilation of SST and SSH data in South China Sea based on ROMS

  • 摘要: 卫星遥感观测获得了大量高分辨率的海面实时信息,包括海面温度(SST)和海面高度(SSH)等,同化进入数值模式可有效提升模拟精度。本文基于ROMS模式与四维变分同化方法(4DVAR),使用AVHRR SST和AVISO SSH数据,开展了南海区域同化实验。为检验同化的效果,分别利用HYCOM再分析资料和Argo温盐实测数据分析了同化结果的海面高度、流场及温盐剖面的精度。对比结果表明,SST和SSH的同化能够改善ROMS的模拟结果:同化后海面高度场能够更为准确地捕捉海洋的中尺度特征,与HYCOM海面高度再分析资料相比,平均绝对偏差和均方根误差分别为0.054 m和0.066 m;与HYCOM 10 m层流场相比,东向与北向流速平均绝对偏差分别为0.12 m/s和0.11 m/s,相比未同化均提升约0.01 m/s;温盐同化结果与Argo温盐实测具有较高的一致性,温度和盐度平均绝对偏差为0.45℃、0.077,均方根误差为0.91℃、0.11,单个的温盐廓线对比说明,同化结果与HYCOM再分析资料精度相当。
  • Bouttier F, Courtier P. Data assimilation concepts and methods March 1999[C]. Bracknell:ECMWF, 1999, 59.
    Ezer T, Mellor G L. Continuous assimilation of Geosat altimeter data into a three-dimensional primitive equation gulf stream model[J]. Journal of Physical Oceanography, 1994, 24(4):832-847.
    Liu Danian, Zhu Jiang, Shu Yeqiang, et al. Model-based assessment of a Northwestern Tropical Pacific moored array to monitor intraseasonal variability[J]. Ocean Modelling, 2018, 126:1-12.
    Liu Danian, Shi Ping, Shu Yeqiang, et al. Assimilating temperature and salinity profiles using Ensemble Kalman Filter with an adaptive observation error and T-S constraint[J]. Acta Oceanologica Sinica, 2016, 35(1):30-37.
    Shu Yeqiang, Wang Dongxiao, Zhu Jiang, et al. The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model[J]. Ocean Modelling, 2011, 36(3/4):228-241.
    Cooper M, Haines K. Altimetric assimilation with water property conservation[J]. Journal of Geophysical Research, 1996, 101(C1):1059-1078.
    White W B, Tai C K, Holland W R. Continuous assimilation of Geosat Altimetric sea level observations into a numerical synoptic ocean model of the California current[J]. Journal of Geophysical Research, 1990, 95(C3):3127-3148.
    Yan Changxiang, Zhu Jiang, Li Rongfeng, et al. Roles of vertical correlations of background error and T-S relations in estimation of temperature and salinity profiles from sea surface dynamic height[J]. Journal of Geophysical Research, 2004, 109(C8):C08010.
    Ratheesh S, Sharma R, Basu S. Projection-based assimilation of satellite-derived surface data in an Indian Ocean circulation model[J]. Marine Geodesy, 2012, 35(2):175-187.
    Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. Assimilating remote sensing and in situ observations into a coastal model of northern South China Sea using ensemble Kalman filter[J]. Continental Shelf Research, 2011, 31(6):S24-S36.
    Zeng Xuezhi, Peng Shiqiu, Li Zhijin, et al. A reanalysis dataset of the South China Sea[J]. Scientific Data, 2014, 1:140052.
    Li Zhijin, Chao Yi, McWilliams J C, et al. A three-dimensional variational data assimilation scheme for the regional ocean modeling system[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(11):2074-2090.
    Moore A M, Arango H G, Broquet G, et al. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems:Part Ⅰ-System overview and formulation[J]. Progress in Oceanography, 2011, 91(1):34-49.
    Moore A M, Arango H G, Broquet G, et al. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems:Part Ⅱ-Performance and application to the California Current System[J]. Progress in Oceanography, 2011, 91(1):50-73.
    Moore A M, Arango H G, Broquet G, et al. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems:Part Ⅲ-Observation impact and observation sensitivity in the California Current System[J]. Progress in Oceanography, 2011, 91(1):74-94.
    Atlas R, Hoffman R N, Ardizzone J, et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2):157-174.
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3):437-471.
    Reynolds R W, Smith T M, Liu Chunying, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22):5473-5496.
    Powell B S, Arango H G, Moore A M, et al. 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS)[J]. Ocean Modelling, 2008, 23(3/4):130-145.
    Cummings J A, Smedstad O M. Variational data assimilation for the global ocean[M]//Park S, Xu L. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. Ⅱ). Berlin, Heidelberg:Springer, 2013:303-343.
    苏纪兰. 南海环流动力机制研究综述[J]. 海洋学报, 2005, 27(6):1-8. Su Jilan. Overview of the South China Sea circulation and its dynamics[J]. Haiyang Xuebao, 2005, 27(6):1-8.
    Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE[EB/OL]. (2000-09-12)[2015-9-20]. http://doi.org/10.17882/42182.
  • 加载中
计量
  • 文章访问数:  736
  • HTML全文浏览量:  8
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-05-29

目录

    /

    返回文章
    返回