留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极地预报年及相关科学问题

姜珊 杨清华 孙启振 李春花 张林 滕骏华

姜珊, 杨清华, 孙启振, 李春花, 张林, 滕骏华. 极地预报年及相关科学问题[J]. 海洋学报, 2018, 40(11): 157-165. doi: 10.3969/j.issn.0253-4193.2018.11.016
引用本文: 姜珊, 杨清华, 孙启振, 李春花, 张林, 滕骏华. 极地预报年及相关科学问题[J]. 海洋学报, 2018, 40(11): 157-165. doi: 10.3969/j.issn.0253-4193.2018.11.016
Jiang Shan, Yang Qinghua, Sun Qizhen, Li Chunhua, Zhang Lin, Teng Junhua. A brief introduction to Year of Polar Prediction and its related scientific questions[J]. Haiyang Xuebao, 2018, 40(11): 157-165. doi: 10.3969/j.issn.0253-4193.2018.11.016
Citation: Jiang Shan, Yang Qinghua, Sun Qizhen, Li Chunhua, Zhang Lin, Teng Junhua. A brief introduction to Year of Polar Prediction and its related scientific questions[J]. Haiyang Xuebao, 2018, 40(11): 157-165. doi: 10.3969/j.issn.0253-4193.2018.11.016

极地预报年及相关科学问题

doi: 10.3969/j.issn.0253-4193.2018.11.016
基金项目: 国家重点研发计划(2018YFC1407205,2018YFA0605901)

A brief introduction to Year of Polar Prediction and its related scientific questions

  • 摘要: 为有效应对全球气候变化和极地增暖挑战,世界气象组织(WMO)于2013年启动了"极地预报计划"(PPP,2013-2022年),并于2017年启动了PPP的核心行动"极地预报年"(YOPP,2017年中期至2019年中期)。本文对"极地预报计划"和"极地预报年"的相关情况进行了介绍,重点说明了该研究项目支撑下在社会效益、检验、观测、模拟、资料同化、集合预报、可预报性和诊断、全球关联8个领域需要解决的科学问题和开展的工作。同时,探讨了我国借PPP/YOPP实施契机,在极地现场观测、数值预报和信息服务方面需要做出的努力。
  • Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4):RG4004.
    Simmonds I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013[J]. Annals of Glaciology, 2015, 56(69):18-28.
    Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness[J]. The Cryosphere Discussions, 2014, 8(2):2179-2212.
    WMO. The Global Climate in 2011-2015[M]. Geneva:World Meteorological Organization, 2016.
    Jung T, Gordon N D, Bauer P, et al. Advancing polar prediction capabilities on daily to seasonal time scales[J]. Bulletin of the American Meteorological Society, 2016, 97(9):1631-1647.
    Smith L C, Stephenson S R. New trans-Arctic shipping routes navigable by midcentury[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13):E1191-E1195.
    Emmerson C, Lahn G. Arctic opening:opportunity and risk in the high north[R]. Chatham House, 2012:59.
    Blanchard-Wrigglesworth E, Barthélemy A, Chevallier M, et al. Multi-model seasonal forecast of Arctic sea-ice:forecast uncertainty at pan-arctic and regional scales[J]. Climate Dynamics, 2017, 49(4):1399-1410.
    姜珊, 杨清华, 梁颖祺, 等. 可服务于北极航道的海冰与气象预报信息综合分析[J]. 极地研究, 2017, 29(3):399-413. Jiang Shan, Yang Qinghua, Liang Yingqi, et al. Sea ice and weather forecasting information for Arctic sea routes:a synthetic analysis[J]. Chinese Journal of Polar Research, 2017, 29(3):399-413.
    Powers J G, Manning K W, Bromwich D H, et al. A decade of Antarctic science support through AMPS[J]. Bulletin of the American Meteorological Society, 2012, 93(11):1699-1712.
    WNO. WWRP polar prediction project science plan[EB/OL]. (2013-03-19)[2017-12-02]. https://www.polarprediction.net/fileadmin/user_upload/www.polarprediction.net/Home/Documents/WWRP-PPP_Science_Plan_FInal_19Mar2013.pdf
    WNO. WWRP polar prediction project implementation plan for the year of polar prediction (YOPP)[EB/OL]. (2016-05-31)[2017-12-02]. http://epic.awi.de/41795/1/FINAL_WWRP_PPP_YOPP_Plan_28_July_web.pdf.
    Goessling H F, Jung T, Klebe S, et al. Paving the way for the year of polar prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(4):ES85-ES88.
    Bromwich D H, Monaghan A J, Manning K W, et al. Real-time forecasting for the Antarctic:an evaluation of the Antarctic mesoscale prediction system (AMPS)[J]. Monthly Weather Review, 2005, 133(3):579-603.
    Jung T, Matsueda M. Verification of global numerical weather forecasting systems in polar regions using TIGGE data[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695):574-582.
    Bauer P, Magnusson L, Thépaut J N, et al. Aspects of ECMWF model performance in polar areas[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695):583-596.
    Roemmich D, Gilson J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2):81-100.
    Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4):732-737.
    Kaleschke L, Tian-Kunze X, Maaẞ N, et al. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period[J]. Geophysical Research Letters, 2012, 39(5):L05501.
    Tian-Kunze X, Kaleschke L, Maaẞ N, et al. SMOS-derived thin sea ice thickness:algorithm baseline, product specifications and initial verification[J]. The Cryosphere, 2014, 8(3):997-1018.
    Kwok R. Satellite remote sensing of sea-ice thickness and kinematics:a review[J]. Journal of Glaciology, 2010, 56(200):1129-1140.
    Kern S, Spreen G. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat[J]. Annals of Glaciology, 2015, 56(69):107-119.
    Inoue J, Enomoto T, Hori M E. The impact of radiosonde data over the ice-free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere[J]. Geophysical Research Letters, 2013, 40(5):864-869.
    Yamazaki A, Inoue J, Dethloff K, et al. Impact of radiosonde observations on forecasting summertime arctic cyclone formation[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(8):3249-3273.
    Inoue J, Yamazaki A, Ono J, et al. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route[J]. Scientific Reports, 2015, 5:16868.
    Inoue J, Enomoto T, Miyoshi T, et al. Impact of observations from Arctic drifting buoys on the reanalysis of surface fields[J]. Geophysical Research Letters, 2009, 36(8):L08501.
    Meredith M P, Schofield O, Newman L, et al. The vision for a Southern Ocean observing system[J]. Current Opinion in Environmental Sustainability, 2013, 5(3/4):306-313.
    Sandu I, Beljaars A, Bechtold P, et al. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2):117-133.
    Bromwich D H, Otieno F O, Hines K M, et al. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(2):274-292.
    Jung T, Rhines P B. Greenland's pressure drag and the Atlantic storm track[J]. Journal of the Atmospheric Sciences, 2007, 64(11):4004-4030.
    Renfrew I A, Petersen G N, Sproson D A J, et al. A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(645):2046-2066.
    Elvidge A D, Renfrew I A, King J C, et al. Foehn jets over the Larsen C Ice Shelf, Antarctica[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(688):698-713.
    Holtslag A A M, Svensson G, Baas P, et al. Stable atmospheric boundary layers and diurnal cycles:challenges for weather and climate models[J]. Bulletin of the American Meteorological Society, 2013, 94(11):1691-1706.
    Vihma T, Pirazzini R, Fer I, et al. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system:a review[J]. Atmospheric Chemistry and Physics, 2014, 14(17):9403-9450.
    Bougeault P, Toth Z, Bishop C, et al. The THORPEX interactive grand global ensemble[J]. Bulletin of the American Meteorological Society, 2010, 91(8):1059-1072.
    Hines K M, Bromwich D H, Bai L S, et al. Sea ice enhancements to Polar WRF[J]. Monthly Weather Review, 2015, 143(6):2363-2385.
    Powers J G. Mesoscale NWP over Antarctica[C]//Proceedings of Polar Prediction Project Meeting. Boulder, Colorado:NCAR, 2013.
    Kalnay E. Atmospheric modeling, data assimilation and predictability[M]. Cambridge:Cambridge University Press, 2003:368.
    Tilinina N, Gulev S K, Bromwich D H. New view of Arctic cyclone activity from the Arctic system reanalysis[J]. Geophysical Research Letters, 2014, 41(5):1766-1772.
    Juricke S, Goessling H F, Jung T. Potential sea ice predictability and the role of stochastic sea ice strength perturbations[J]. Geophysical Research Letters, 2014, 41(23):8396-8403.
    Holland M M, Bailey D A, Vavrus S. Inherent sea ice predictability in the rapidly changing Arctic environment of the community climate system model, version 3[J]. Climate Dynamics, 2011, 36(7/8):1239-1253.
    Holland M M, Stroeve J. Changing seasonal sea ice predictor relationships in a changing Arctic climate[J]. Geophysical Research Letters, 2011, 38(8):L18501.
    Chevallier M, Salas-Mélia D. The role of sea ice thickness distribution in the Arctic sea ice potential predictability:a diagnostic approach with a coupled GCM[J]. Journal of Climate, 2012, 25(8):3025-3038.
    Tietsche S, Day J J, Guemas V, et al. Seasonal to interannual Arctic sea ice predictability in current global climate models[J]. Geophysical Research Letters, 2014, 41(3):1035-1043.
    Guemas V, Blanchard-Wrigglesworth E, Chevallier M, et al. A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695):546-561.
    Wang W Q, Chen M Y, Kumar A. Seasonal prediction of Arctic Sea ice extent from a coupled dynamical forecast system[J]. Monthly Weather Review, 2013, 141(4):1375-1394.
    Stroeve J, Hamilton L C, Bitz C M, et al. Predicting September sea ice:ensemble skill of the SEARCH Sea Ice Outlook 2008-2013[J]. Geophysical Research Letters, 2014, 41(7):2411-2418.
    Day J J, Hawkins E, Tietsche S. Will Arctic sea ice thickness initialization improve seasonal forecast skill?[J]. Geophysical Research Letters, 2014, 41(21):7566-7575.
    Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9):627-637.
    Barnes E A, Screen J A. The impact of Arctic warming on the midlatitude jet-stream:can it? Has it? Will it?[J]. WIREs Climate Change, 2015, 6(3):277-286.
    Jung T, Doblas-Reyes F, Goessling H, et al. Polar lower-latitude linkages and their role in weather and climate prediction[J]. Bulletin of the American Meteorological Society, 2015, 96(11):ES197-ES200.
    Jung T, Kasper M A, Semmler T, et al. Arctic influence on subseasonal midlatitude prediction[J]. Geophysical Research Letters, 2014, 41(10):3676-3680.
    杨清华, 刘骥平, 张占海, 等. 北极海冰数值预报的初步研究——基于海冰-海洋耦合模式MITgcm的模拟试验[J]. 大气科学, 2011, 35(3):473-482. Yang Qinghua, Liu Jiping, Zhang Zhanhai, et al. A preliminary study of the Arctic Sea Ice numerical forecasting:coupled sea ice-ocean modelling experiments based on MITgcm[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3):473-482.
    杨清华, 李春花, 邢建勇, 等. 2010年夏季北极海冰数值预报试验[J]. 极地研究, 2012, 24(1):87-94. Yang Qinghua, Li Chunhua, Xing Jianyong, et al. Arctic sea ice forecasting experiments in the summer of 2010[J]. Chinese Journal of Polar Research, 2012, 24(1):87-94.
    Yang Q H, Liu J P, Zhang Z H, et al. Sensitivity of the Arctic sea ice concentration forecasts to different atmospheric forcing:a case study[J]. Acta Oceanologica Sinica, 2014, 33(12):15-23.
    Yang Q H, Losa S N, Losch M, et al. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter[J]. Journal of Geophysical Research:Oceans, 2014, 119(10):6680-6692.
    赵杰臣, 杨清华, 李明, 等. Nudging资料同化对北极海冰密集度预报的改进[J]. 海洋学报, 2016, 38(5):70-82. Zhao Jiechen, Yang Qinghua, Li Ming, et al. Improving Arctic sea ice concentration forecasts with a Nudging data assimilation method[J]. Haiyang Xuebao, 2016, 38(5):70-82.
    孙启振, 丁卓铭, 沈辉, 等. 我国极地数值天气预报系统的初步建立与应用[J]. 海洋预报, 2017, 34(4):1-10. Sun Qizhen, Ding Zhuoming, Shen Hui, et al. Polar numerical weather prediction system:preliminary establishment and application[J]. Marine Forecasts, 2017, 34(4):1-10.
    Yang Q H, Losa S N, Losch M, et al. The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(691):2314-2323.
    Yang Q H, Losa S N, Losch M, et al. Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter[J]. Annals of Glaciology, 2015, 56(69):38-44.
    Yang Q H, Losch M, Losa S N, et al. Brief communication:the challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation[J]. The Cryosphere, 2016, 10(2):761-774.
    Yang Q H, Losch M, Losa S N, et al. Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(3):397-407.
    Liang X, Yang Q H, Nerger L, et al. Assimilating Copernicus SST data into a pan-Arctic ice-ocean coupled model with a local SEIK filter[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9):1985-1999.
    Mu L J, Yang Q H, Losch M, et al. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(711):529-538.
  • 加载中
计量
  • 文章访问数:  663
  • HTML全文浏览量:  6
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-04-12

目录

    /

    返回文章
    返回