留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化

冯贵平 王其茂 宋清涛

冯贵平, 王其茂, 宋清涛. 基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J]. 海洋学报, 2018, 40(11): 73-84. doi: 10.3969/j.issn.0253-4193.2018.11.008
引用本文: 冯贵平, 王其茂, 宋清涛. 基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J]. 海洋学报, 2018, 40(11): 73-84. doi: 10.3969/j.issn.0253-4193.2018.11.008
Feng Guiping, Wang Qimao, Song Qingtao. Greenland ice sheet mass variations based on GRACE satellite gravity data[J]. Haiyang Xuebao, 2018, 40(11): 73-84. doi: 10.3969/j.issn.0253-4193.2018.11.008
Citation: Feng Guiping, Wang Qimao, Song Qingtao. Greenland ice sheet mass variations based on GRACE satellite gravity data[J]. Haiyang Xuebao, 2018, 40(11): 73-84. doi: 10.3969/j.issn.0253-4193.2018.11.008

基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化

doi: 10.3969/j.issn.0253-4193.2018.11.008
基金项目: 国家重点研发计划(2018YFC1407203);国家自然科学基金项目(41276019,41506211);上海海洋大学科技发展基金(A2-0203-00-100228)

Greenland ice sheet mass variations based on GRACE satellite gravity data

  • 摘要: 重力场恢复与气候试验(GRACE)卫星为高分辨率地监测全球冰川质量变化提供了一种新的手段。本文利用2003年1月至2014年12月Level-2 RL05的GRACE产品,进行去相关误差滤波、高斯滤波和海洋-陆地信号泄漏改正后,得到了格陵兰岛冰盖质量变化的时间序列,分析了格陵兰岛冰盖质量变化的长期趋势项,并与ICESat的结果进行了比较验证。研究表明,在2003年1月至2014年12月之间,格陵兰岛冰盖质量减小速率约为(-260±43)Gt/a,对全球海平面的贡献约为(0.72±0.12)mm/a,对同时期海平面上升的贡献占25.8%,并且格陵兰岛冰盖消融有着很强的区域差异性,冰盖消融的区域主要集中在边缘区域,中部内陆地区的冰盖质量则有增加的趋势。并进一步和ICESat的结果进行了比较分析,ICESat的结果显示格陵兰岛冰盖质量减小速率约为(-174±43)~(-184.8±28.2)Gt/a,而GRACE的结果则为(-209.4±26.3)Gt/a,有着较好的一致性,并且区域分布特征也符合较好。
  • Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293):1334-1337.
    Griggs D J, Noguer M. Climate change 2001:the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 2002, 57(8):267-269.
    Wahr J, Swenson S, Zlotnicki, V, et al. Time-variable gravity from GRACE:first results[J]. Geophysical Research Letters, 2004, 31(11):L11501.
    Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field:hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30205-30229.
    Swenson S, Wahr J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B9):ETG 3-1-ETG 3-13.
    Velicogna I, Wahr J. Greenland mass balance from GRACE[J]. Geophysical Research Letters, 2005, 32(18):L18505.
    Chen J L, Wilson C R, Tapley B D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet[J]. Science, 2006, 313(5795):1958-1960.
    Wouters B, Chambers D, Schrama E J O. GRACE observes small-scale mass loss in Greenland[J]. Geophysical Research Letters, 2008, 35(20):L20501.
    Sasgen I, van den Broeke M, Bamber J L, et al. Timing and origin of recent regional ice-mass loss in Greenland[J]. Earth and Planetary Science Letters, 2012, 333-334:293-303.
    Schrama E J O, Wouters B. Revisiting Greenland ice sheet mass loss observed by GRACE[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B2):B02407.
    Velicogna I, Wahr J. Measurements of time-variable gravity show mass loss in Antarctica[J]. Science, 2006, 311(5768):1754-1756.
    Paulson A, Zhong Shijie, Wahr J. Limitations on the inversion for mantle viscosity from postglacial rebound[J]. Geophysical Journal International, 2007, 168(3):1195-1209.
    Chen J L, Wilson C R, Blankenship D D, et al. Antarctic mass rates from GRACE[J]. Geophysical Research Letters, 2006, 33(11):L11502.
    Geruo A, Wahr J, Zhong Shijie. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading:an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2):557-572.
    Schutz B E, Zwally H J, Shuman C A, et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 2005, 32(21):L21S01.
    Chambers D P, Bonin J A. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean[J]. Ocean Science, 2012, 8(5):859-868.
    Chambers D P. Converting release-04 gravity coefficients into maps of equivalent water thickness[EB/OL].(2017-11-01)[2018-01-11].http://gracetellus.jpl.nasa.gov/files/GRACE-dpc200711_RL04.pdf
    Swenson S C, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33:L08402.
    Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8):B08410.
    Cheng Minkang, Tapley B D. Variations in the Earth's oblateness during the past 28 years[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B9):B09402.
    Ewert H, Groh A, Dietrich R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE[J]. Journal of Geodynamics, 2012, 59-60:111-123.
    Paulson A, Zhong Shijie, Wahr J. Inference of mantle viscosity from GRACE and relative sea level data[J]. Geophysical Journal International, 2010, 171(2):497-508.
    Peltier W R. Closure of the budget of global sea level rise over the GRACE era:the importance and magnitudes of the required corrections for global glacial isostatic adjustment[J]. Quaternary Science Reviews, 2009, 28(17/18):1658-1674.
    Chambers D P, Wahr J, Tamisiea M E, et al. Ocean mass from GRACE and glacial isostatic adjustment[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B11):B11415.
    Chambers D P, Wahr J, Tamisiea M E, et al. Reply to comment by W. R. Peltier et al. on "Ocean mass from GRACE and glacial isostatic adjustment"[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B11):B11404.
    Peltier W R, Drummond R, Roy K. Comment on"Ocean mass from GRACE and glacial isostatic adjustment"by D. P. Chambers et al.[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B11):B11403.
    Rignot E, Mouginot J. Ice flow in Greenland for the International Polar Year 2008-2009[J]. Geophysical Research Letters, 2012, 39(11):L11501.
    Zwally H J, Li Jun, Brenner A C, et al. Greenland ice sheet mass balance:distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002[J]. Journal of Glaciology, 2011, 57(201):88-102.
    Ramillien G, Lombard A, Cazenave A, et al. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE[J]. Global and Planetary Change, 2006, 53(3):198-208.
    Velicogna I, Wahr J. Acceleration of Greenland ice mass loss in spring 2004[J]. Nature, 2006, 443(7109):329-331.
    Slobbe D C, Ditmar P, Lindenbergh R C. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data[J]. Geophysical Journal International, 2009, 176(1):95-106.
    Baur O, Kuhn M, Featherstone W E. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects[J]. Journal of Geophysical Research, 2009, 114(B6):B06407.
    Velicogna I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE[J]. Geophysical Research Letters, 2009, 36(19):L19503.
    Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482(7386):514-518.
    Schrama E J O, Wouters B, Rietbroek R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(7):6048-6066.
    Van den Broeke M R, Enderlin E M, Howat I M, et al. On the recent contribution of the Greenland ice sheet to sea level change[J]. The Cryosphere, 2016, 10(5):1933-1946.
  • 加载中
计量
  • 文章访问数:  856
  • HTML全文浏览量:  18
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-15
  • 修回日期:  2018-07-16

目录

    /

    返回文章
    返回