留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪热传导系数与穿过海冰的热通量研究

林龙 赵进平

林龙, 赵进平. 雪热传导系数与穿过海冰的热通量研究[J]. 海洋学报, 2018, 40(11): 23-32. doi: 10.3969/j.issn.0253-4193.2018.11.003
引用本文: 林龙, 赵进平. 雪热传导系数与穿过海冰的热通量研究[J]. 海洋学报, 2018, 40(11): 23-32. doi: 10.3969/j.issn.0253-4193.2018.11.003
Lin Long, Zhao Jinping. Studies of thermal conductivity of snow and conductive heat flux on Arctic perennial sea ice[J]. Haiyang Xuebao, 2018, 40(11): 23-32. doi: 10.3969/j.issn.0253-4193.2018.11.003
Citation: Lin Long, Zhao Jinping. Studies of thermal conductivity of snow and conductive heat flux on Arctic perennial sea ice[J]. Haiyang Xuebao, 2018, 40(11): 23-32. doi: 10.3969/j.issn.0253-4193.2018.11.003

雪热传导系数与穿过海冰的热通量研究

doi: 10.3969/j.issn.0253-4193.2018.11.003
基金项目: 全球变化研究国家重大科学研究计划(2015CB953900);国家自然科学基金重点项目(41330960);国家重点研发计划课题(2016YFC1402705)

Studies of thermal conductivity of snow and conductive heat flux on Arctic perennial sea ice

  • 摘要: 雪热传导系数是海冰质量平衡过程中的重要物理参数,决定了穿透海冰的热传导通量。北冰洋海冰质量平衡浮标观测获得多年冰上冬季温度链剖面可以明显地区分冰雪界面。本文考虑到冰雪界面处温度随时间变化,再根据冰雪界面热传导通量连续假定,提出了新的雪热传导系数计算方法。受不同环境因素影响,多年冰上各个浮标的雪热传导系数在0.23~0.41 W/(m·K)之间,均值为(0.32±0.08) W/(m·K)。北冰洋多年冰上冬季穿过海冰的热传导通量最大发生在11月至翌年3月,约14~16 W/m2。结冰季节,来自海冰自身降温的热量对穿过海冰向大气传输的热量贡献逐月减少,从9月100%减小到12月的35%,翌年的1月至3月稳定在10%左右。夏季,短波辐射通能量通过热传导自上而下加热海冰,海冰上层温度高于下层,热量传播方向与冬季反向,往海冰内部传递。直到9月短波辐射完全消失,气温下降,热量再次转变为自下往上传递。从冰底热传导来看,夏季出现海冰向冰水界面传递热量现象。由于雪较好的绝热性,冰上覆雪极大地削弱了海冰上层热传导通量,从而减缓了秋冬季节的结冰速度。尽管受雪厚影响,多年冰上层热传导通量与气温依旧具有很好的线性关系,气温每降低1℃,热传导通量增加约0.59 W/m2
  • Vihma T. Effects of Arctic sea ice decline on weather and climate:a review[J]. Surveys in Geophysics, 2014, 35(5):1175-1214.
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16):L16502.
    Kwok R, Untersteiner N. The thinning of Arctic sea ice[J]. Physics Today, 2011, 64(4):36-41.
    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979-2010[J]. The Cryosphere, 2012, 6(4):881-889.
    Overland J E, Wang Muyin. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice[J]. Tellus A, 2010, 62(1):1-9.
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293):1334-1337.
    Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8):L08501.
    Stroeve J C, Markus T, Boisvert L, et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 2014, 41(4):1216-1225.
    Maykut G A. Energy exchange over young sea ice in the central Arctic[J]. Journal of Geophysical Research:Oceans, 1978, 83(C7):3646-3658.
    Sturm M, Perovich D K, Holmgren J. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea[J]. Journal of Geophysical Research:Oceans, 2002, 107(C10):SHE 19-1-SHE 19-17.
    Pringle D J, Eicken H, Trodahl H J, et al. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research:Oceans, 2007, 112(C4):C04017.
    Mellor M. Properties of snow[M]. United States Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1964.
    Kurtz N T, Markus T, Farrell S L, et al. Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production[J]. Journal of Geophysical Research:Oceans, 2011, 116(C4):C04015.
    Maykut G A, Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice[J]. Journal of Geophysical Research, 1971, 76(6):1550-1575.
    Blazey B A, Holland M M, Hunke E C. Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM[J]. The Cryosphere, 2013, 7(6):1887-1900.
    Lecomte O, Fichefet T, Vancoppenolle M, et al. On the formulation of snow thermal conductivity in large-scale sea ice models[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(3):542-557.
    Sturm M, Holmgren J, K nig M, et al. The thermal conductivity of seasonal snow[J]. Journal of Glaciology, 1997, 43(143):26-41.
    Perovich D K, Elder B C, Richter-Menge J A. Observations of the annual cycle of sea ice temperature and mass balance[J]. Geophysical Research Letters, 1997, 24(5):555-558.
    Lei Ruibo, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica[J]. Journal of Geophysical Research:Oceans, 2010, 115(C2):C02006.
    Richter-Menge J A, Perovich D K, Elder B C, et al. Ice mass-balance buoys:a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover[J]. Annals of Glaciology, 2006, 44:205-210.
    Untersteiner N. On the mass and heat budget of Arctic sea ice[J]. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, 1961, 12(2):151-182.
    Yen Y C, Cheng K, Fukusako S. A review of intrinsic thermophysical properties of snow, ice, sea ice, and frost[J]. The Northern Engineer, 1991, 24:53-74.
    Schwarzacher W. Pack-ice studies in the Arctic Ocean[J]. Journal of Geophysical Research, 1959, 64(12):2357-2367.
    McPhee M G, Untersteiner N. Using sea ice to measure vertical heat flux in the ocean[J]. Journal of Geophysical Research:Oceans, 1982, 87(C3):2071-2074.
    Huwald H, Tremblay L B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes[J]. Journal of Geophysical Research:Oceans, 2005, 110(C5):C05009.
    Lei Ruibo, Li Na, Heil P, et al. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean[J]. Journal of Geophysical Research:Oceans, 2014, 119(1):537-547.
    Provost C, Sennéchael N, Miguet J, et al. Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015 campaign:influence of basal ice melt and storms[J]. Journal of Geophysical Research:Oceans, 2017, 122(9):7115-7134.
  • 加载中
计量
  • 文章访问数:  651
  • HTML全文浏览量:  18
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-06-12

目录

    /

    返回文章
    返回