留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳、氮稳定同位素的雅浦海沟底栖生物食物来源和营养级初探

郭承秧 杨志 陈建芳 郑豪 张东声 冉莉华 王春生 鹿博 陈倩娜

郭承秧, 杨志, 陈建芳, 郑豪, 张东声, 冉莉华, 王春生, 鹿博, 陈倩娜. 基于碳、氮稳定同位素的雅浦海沟底栖生物食物来源和营养级初探[J]. 海洋学报, 2018, 40(10): 51-60. doi: 10.3969/j.issn.0253-4193.2018.10.006
引用本文: 郭承秧, 杨志, 陈建芳, 郑豪, 张东声, 冉莉华, 王春生, 鹿博, 陈倩娜. 基于碳、氮稳定同位素的雅浦海沟底栖生物食物来源和营养级初探[J]. 海洋学报, 2018, 40(10): 51-60. doi: 10.3969/j.issn.0253-4193.2018.10.006
Guo Chengyang, Yang Zhi, Chen Jianfang, Zheng Hao, Zhang Dongsheng, Ran Lihua, Wang Chunsheng, Lu Bo, Chen Qianna. A preliminary study on the food resources and trophic levels of the benthic community in the Yap Trench based on stable carbon and nitrogen isotopes[J]. Haiyang Xuebao, 2018, 40(10): 51-60. doi: 10.3969/j.issn.0253-4193.2018.10.006
Citation: Guo Chengyang, Yang Zhi, Chen Jianfang, Zheng Hao, Zhang Dongsheng, Ran Lihua, Wang Chunsheng, Lu Bo, Chen Qianna. A preliminary study on the food resources and trophic levels of the benthic community in the Yap Trench based on stable carbon and nitrogen isotopes[J]. Haiyang Xuebao, 2018, 40(10): 51-60. doi: 10.3969/j.issn.0253-4193.2018.10.006

基于碳、氮稳定同位素的雅浦海沟底栖生物食物来源和营养级初探

doi: 10.3969/j.issn.0253-4193.2018.10.006
基金项目: 国家自然科学基金资助项目(41406091);国家重点基础研究发展计划(973计划)项目(2015CB755902)。

A preliminary study on the food resources and trophic levels of the benthic community in the Yap Trench based on stable carbon and nitrogen isotopes

  • 摘要: 为了分析雅浦海沟中底栖生物群落的食物来源和营养级,本研究分析了雅浦海沟真光层中浮游植物和浮游动物、海底沉积物和巨型底栖生物(海绵、海参、海蛇尾、海星、海葵和钩虾)中的碳、氮稳定同位素组成。研究发现雅浦海沟真光层中的浮游植物和浮游动物δ13C值[(-22.8±0.4)‰和(-21.8±0.8)‰]和δ15N值[(5.4±0.4)‰和(6.8±0.2)‰]与巨型底栖生物的δ13C值(-20.1‰~-16.8‰)和δ15N值(11.9‰~17.9‰)的差异超过了一个营养级,表明作为底栖生物的初始食物来源的浮游植物和浮游动物在向下输送的过程中经历了食物链传递和细菌的降解。巨型底栖生物的δ15N和δ13C值之间无显著的相关性,此外不同物种之间营养级也存在明显差异,表现为海绵的营养级相对较高(3.4~4.7),海参(3.3~3.6)、海蛇尾(3.4~3.5)和海星(3.2~3.7)的营养级较为接近,钩虾(2.9~3.3)和海葵(3.1)的营养级则相对略低,反映了底栖生物不同物种之间食物来源的多样化。
  • Blankenship L E, Levin L A. Extreme food webs:foraging strategies and diets of scavenging amphipods from the ocean's deepest 5 kilometers[J]. Limnology and Oceanography, 2007, 52(4):1685-1697.
    Blankenship-Williams L E, Levin L A. Living Deep:a synopsis of hadal trench ecology[J]. Marine Technology Society Journal, 2009, 43(5):137-143.
    Wolff T. The hadal community, an introduction[J]. Deep-Sea Research, 1959, 6:95-124.
    Knox G A. Littoral biology-littoral ecology and biogeography of the southern oceans[J]. Proceedings of the Royal Society B:Biological Sciences, 1960, 152(949):577-624.
    Drazen J C, Popp B N, Choy C A, et al. Bypassing the abyssal benthic food web:macrourid diet in the eastern north pacific inferred from stomach content and stable isotopes analyses[J]. Limnology and Oceanography, 2008, 53(6):2644-2654.
    Deniro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals[J]. Geochimica et Cosmochimica Acta, 1978, 42(5):495-506.
    Fanelli E, Cartes J E, Papiol V. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope:insight from stable isotopes[J]. Journal of Marine Systems, 2011, 87(1):79-89.
    Hobson K A, Welch H E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis[J]. Marine Ecology Progress Series, 1992, 84(1):9-18.
    Hesslein R H, Hallard K A, Ramlal P. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(10):2071-2076.
    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system:implications for tectonics of the southern Philippine Sea Plate[J]. Chemical Geology, 2002, 189(1/2):35-53.
    Post D M. Using stable isotopes to estimate trophic position:models, methods, and assumptions[J]. Ecology, 2002, 83(3):703-718.
    Beaulieu S E, Mills S, Mullineaux L, et al. International study of larval dispersal and population connectivity at hydrothermal vents in the U.S. Marianas trench marine national monument[C]//Oceans' 2011MTS/IEEE KONA. Waikoloa, HI, USA:IEEE, 2011:1-6.
    Boulegue J, Benedetti E L, Dron D, et al. Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones[J]. Earth and Planetary Science Letters, 1987, 83(1/4):343-355.
    Limén H, Juniper S K, Tunnicliffe V, et al. Benthic community structure on two peaks of an erupting seamount:Northwest Rota-1 Volcano, Mariana Arc, western Pacific[J]. Cahiers de Biologie Marine, 2006, 47(4):457-463.
    Sokolova M N. Trophic structure of abyssal macrobenthos[J]. Advances in Marine Biology, 1997, 32(8):427-525.
    Rice A L, Billett D S M, Fry J, et al. Seasonal deposition of phytodetritus to the deep-sea floor[J]. Proceedings of the Royal Society of Edinburgh, 1986, 88B:265-279.
    Hannides C, Popp B N, Choy CA, et al. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre:a stable isotope perspective[J]. Limnology and Oceanography, 2013, 58(6):1931-1946.
    Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches:the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3):190-197.
    Blankenship L E, Yayanos A A, Cadien D B, et al. Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec Trenches[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2006, 53(1):48-61.
    Smith C R. Factors controlling bioturbation in deep-sea sediments and their relation to models of carbon diagenesis[M]//Rowe G T, Pariente V. Deep-Sea Food Chains and the Global Carbon Cycle. Netherlands:Springer, 1992:375-393.
    Sokołowski A, Szczepańska A, Richard P K, et al. Trophic structure of the macrobenthic community of Hornsund, Spitsbergen, based on the determination of stable carbon and nitrogen isotopic signatures[J]. Polar Biology, 2014, 37(9):1247-1260.
    Newell R. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica[J]. Journal of Zoological Society of London, 1965, 144(1):25-45.
    Mare M F. A study of a marine benthic community with special reference to the micro-organisms[J]. Journal of the Marine Biological Association of the United Kingdom, 1942, 25(3):517-554.
    Fanelli E, Papiol V, Cartes J E, et al. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean):Evidence from δ13C and δ15N analysis[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2011, 58(1):98-109.
    Iken K, Brey T, Wand U, et al. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic):a stable isotope analysis[J]. Progress in Oceanography, 2001, 50(1/4):383-405.
    Kahn A S, Chu J W F, Leys S P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia[J]. Scientific Reports, 2018, 8:756.
    Lampitt R S. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1985, 32(8):885-897.
    Wilkinson C R, Garrone R, Vacelet J. Marine sponges discriminate between food bacteria and bacterial symbionts:electron microscope radioautography and in situ evidence[J]. Proceedings of the Royal Society B:Biological Sciences, 1984, 220(1221):519-528.
    Shick J M, Edwards K C, Dearborn J H. Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus:ciliated surfaces and animal-sediment interactions[J]. Marine Ecology Progress Series, 1981, 5:165-184.
    Brun E. Food and feeding habits of Luidia ciliaris echinodermata:asteroidea[J]. Journal of the Marine Biological Association of the United Kingdom, 1972, 52(1):225-236.
    Vacelet J, Fiala-Médioni A, Fisher C R, et al. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge[J]. Marine Ecology Progress Series, 1996, 145(1/3):77-85.
    Kiyashko S I, Kharlamenko V I, Sanamyan K, et al. Trophic structure of the abyssal benthic community in the Sea of Japan inferred from stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 2014, 500:121-137.
    Wada E, Minagawa M, Mizutani H, et al. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan[J]. Estuarine, Coastal and Shelf Science, 1987, 25(3):321-336.
    Eadie B J, Jeffrey L M. δ13C analyses of oceanic particulate organic matter[J]. Marine Chemistry, 1973, 1(3):199-209.
  • 加载中
计量
  • 文章访问数:  760
  • HTML全文浏览量:  29
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 修回日期:  2018-06-04

目录

    /

    返回文章
    返回