留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风和径流量对长江口缺氧影响的数值模拟

郑静静 刘桂梅 高姗 李云 李志杰

郑静静, 刘桂梅, 高姗, 李云, 李志杰. 风和径流量对长江口缺氧影响的数值模拟[J]. 海洋学报, 2018, 40(9): 1-17. doi: 10.3969/j.issn.0253-4193.2018.09.001
引用本文: 郑静静, 刘桂梅, 高姗, 李云, 李志杰. 风和径流量对长江口缺氧影响的数值模拟[J]. 海洋学报, 2018, 40(9): 1-17. doi: 10.3969/j.issn.0253-4193.2018.09.001
Zheng Jingjing, Liu Guimei, Gao Shan, Li Yun, Li Zhijie. The impact of river discharge and wind on the hypoxia off the Changjiang Estuary: A numerical modeling study[J]. Haiyang Xuebao, 2018, 40(9): 1-17. doi: 10.3969/j.issn.0253-4193.2018.09.001
Citation: Zheng Jingjing, Liu Guimei, Gao Shan, Li Yun, Li Zhijie. The impact of river discharge and wind on the hypoxia off the Changjiang Estuary: A numerical modeling study[J]. Haiyang Xuebao, 2018, 40(9): 1-17. doi: 10.3969/j.issn.0253-4193.2018.09.001

风和径流量对长江口缺氧影响的数值模拟

doi: 10.3969/j.issn.0253-4193.2018.09.001
基金项目: 国家重点研发计划海洋环境安全保障专项(2016YFC1401605,2016YFC1401802);中国科学院战略性先导科技专项(XDA11020104);国家自然科学基金青年科学基金项目"南海低营养级生态模型营养盐循环过程的数值模拟研究"(41206023)。

The impact of river discharge and wind on the hypoxia off the Changjiang Estuary: A numerical modeling study

  • 摘要: 受自然和人类活动的影响,海洋缺氧现象日益严重,威胁着海洋生态环境,海洋缺氧问题已经引起了人们的广泛关注。本文应用区域海洋模式并耦合生态模式,对东海的生态系统进行了数值模拟和分析研究。与观测数据比较显示,该模型能较好地模拟长江口外生态变量的分布趋势。另外本文通过设置不同敏感性实验,探讨风和径流量对长江口底层缺氧现象的影响,结果分析表明,风和径流量对长江口外缺氧区的形成有显著的影响。径流量变化虽然对长江口外缺氧区的季节变化影响并不显著,但是对缺氧区域面积却存在显著的影响。径流量增加,水体层化增强,表层叶绿素浓度增加,最终导致缺氧区域范围扩展;径流量减小,水体层化减弱,表层叶绿素浓度减小,缺氧区域范围缩小。风向和风速的改变不仅影响长江口外缺氧区的季节变化,还影响缺氧区域面积。
  • Wei Hao, He Yunchang, Li Qingji, et al. Summer hypoxia adjacent to the Changjiang Estuary[J]. Journal of Marine Systems, 2007, 67(3/4):292-303.
    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001(30):275-281.
    Karlson K, Rosenberg R, Bonsdorff E, et al. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters-A review[J]. Oceanography and Marine Biology, 2002(40):427-489.
    Yin K, Lin Z, Ke Z. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters[J]. Continental Shelf Research, 2004, 24(16):1935-1948.
    Gu Hongkan. The maximum value of dissolved oxygen in its vertical distribution in the Yellow Sea[J]. Acta Oceanologica Sinica, 1980, 2(2):70-80.
    Vaquer-Sunyer R, Duarte C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40):15452-15457.
    李道季,张经,黄大吉. 长江口外氧的亏损[J]. 中国科学D辑:地球科学, 2002,32(8):686-694. Li Daoji, Zhang Jing, Huang Daji. The oxygen depletion off Yangtze Estuary[J]. Science in China Series D:Earth Sciences, 2002,32(8):686-694.
    Wang Baodong. Hydromorphological mechanisms leading to hypoxia off the Changjiang Estuary[J]. Marine Environmental Research, 2009, 67(1):53-58.
    Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. Hypoxia off the Changjiang (Yangtze River) Estuary:Oxygen depletion and organic matter decomposition[J]. Marine Chemistry, 2011, 125(1/4):108-116.
    Zhou Feng, Huang Daji, Ni Xiaobo, et al Hydrographic analysis on the multi-time scale variability on hypoxia adjacent to the Changjiang River estuary[J]. Acta Ecologica Sinica, 2010, 30(17):4728-4720.
    Li Xiangan, Yu Zhiming, Song Xiuxian, et al. The seasonal characteristics of dissolved oxygen distribution and hypoxia in the Changjiang Estuary[J]. Journal of Coastal Research, 2011, 27(6):52-62.
    Chen Jianyu, Ni Xiaobo, Liu Mingliang, et al. Monitoring the occurrence of seasonal low-oxygen events off the Changjiang Estuary through integration of remote sensing, buoy observations, and modeling[J]. Journal of Geophysical Research:Oceans, 2014, 119(8):5311-5322.
    韦钦胜,王保栋,陈建芳,等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学, 2015, 45(2):187-206. Wei Qinsheng, Wang Baodong, Chen Jianfang, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J]. Science China, 2015, 45(2):187-206.
    Scully M E. Physical controls on hypoxia in Chesapeake Bay:A numerical modeling study[J]. Journal of Geophysical Research:Oceans, 2013, 118(3):1239-1256.
    Wilson R E, Swanson R L, Crowley H A. Perspectives on long-term variations in hypoxic conditions in western Long Island Sound[J]. Journal of Geophysical Research, 2008, 113(C12):C12011.
    Obenour D R, Michalak A, Scavia D. Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling[J]. Ecological Applications, 2015, 25(2):492-505.
    Ni Xiaobo, Huang Daji, Zeng Dingyong, et al. The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer[J]. Journal of Marine Systems, 2016, 154:122-130.
    Shchepetkin A F MJC. The regional oceanic modeling system(ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4):347-404.
    Mellor G, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics & Space physics, 1982, 20(4):851-875.
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):183-204.
    Katja Fennel, Wilkin J, Levin J, et al. Nitrogen cycling in the Middle Atlantic Bight:Results from a three-dimensional model and implications for the North Atlantic nitrogen budget[J]. Global Biogeochemical Cycles, 2006, 20(3):GB3007.
    Fennel K, Hu J, Laurent A, et al. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting[J]. Journal of Geophysical Research:Oceans, 2013, 118(2):990-1002.
    Morel A, Berthon J. Surface pigments, algal biomass profiles, and potential production of the euphotic layer:Relationships reinvestigated in view of remote-sensing applications[J]. Limnology and Oceanography, 1989, 34(8):1545-1562.
    Xu Jirong, Wang Youshao, Yin Jianping, et al. Transformation of dissolved inorganic nitrogen species and nitrification and denitrification processes in the near sea section of Zhujiang River[J]. Acta Scientiae Circumstantiae, 2005, 25(5):686-692.
    刘新成, 沈焕庭, 黄清辉. 长江入河口区生源要素的浓度变化及通量估算[J]. 海洋与湖沼, 2002, 33(3):332-339. Liu Xincheng, Shen Huanting, Huang Qinghui. Concentration variation and flux estimation of dissolved inorganic from the Changjiang River into its estuary[J]. Oceanologia et Limnologia Sinica, 2002, 33(3):332-339.
    Liu K K, Chao S-Y, Lee H J, et al. Seasonal variation of primary productivity in the East China Sea:A numerical study based on coupled physical-biogeochemical model[J]. Deep-Sea Research Part Ⅱ, 2010, 57(19):1762-1782.
    Kourafalou V H, Mey P D, Le Hénaff M, et al. Coastal ocean forecasting:system integration and evaluation[J]. Journal of Operational Oceanography, 2015, 8(S1):s127-s146.
    Ji Qiyan, Zhu Xueming, Wang Hui, et al. Assimilating operational SST and sea ice analysis data into an operational circulation model for the coastal seas of China[J]. Acta Oceanologica Sinica, 2015, 34(7):54-64.
    朱学明, 刘桂梅. 渤海、黄海、东海潮流、潮能通量与耗散的数值模拟研究[J]. 海洋与湖沼, 2012, 43(3):669-677. Zhu Xueming, Liu Guimei. Numerical study on the tidal currents, tidal energy fluxes and dissipation in the China Seas[J]. Oceanologia et Limnologia Sinica, 2012, 43(3):669-677.
    刘志国, 徐韧, 刘材材, 等. 长江口外低氧区特征及其影响研究[J]. 海洋通报, 2012, 31(5):588-593. Liu Zhiguo, Xu Ren, Liu Caicai, et al. Characters of hypoxia area off the Yangtze River Estuary and its influence[J]. Marine Science Bulletin, 2012, 31(5):588-593.
    Chen Y L L, Chen H Y, Gong G C, et al. Phytoplankton production during a summer coastal upwelling in the East China Sea[J]. Continental Shelf Research, 2004, 24(12):1321-1338.
    Goni M, Gordon E, Monacci N, et al. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA)[J]. Continental Shelf Research, 2006, 26(17):2260-2280.
    Scully M E. Wind modulation of dissolved oxygen in Chesapeake Bay[J]. Estuaries and Coasts, 2010, 33(5):1164-1175.
    Xia Meng, Jiang Long. Influence of wind and river discharge on the hypoxia in a shallow bay[J]. Ocean Dynamics, 2015, 65(5):665-678.
    Scully M E. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay[J]. Journal of Physical Oceanography, 2009, 40(6):1435-1440.
    Rabouille C, Conley D J, Dai M H, et al. Comparison of hypoxia among four river-dominated ocean margins:The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers[J]. Continental Shelf Research, 2008, 28(12):1527-1537.
    刘海霞, 李道季, 高磊. 长江口夏季低氧区形成及加剧的成因分析[J]. 海洋科学进展, 2012, 30(2):186-196. Liu Haixia, Li Daoji, Gao Lei. Study on main influencing factors of formation and deterioration of summer hypoxia off the Yangtze River Estuary[J]. Advances in Marine science, 2012,30(2):186-196.
  • 加载中
计量
  • 文章访问数:  665
  • HTML全文浏览量:  18
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2018-05-25

目录

    /

    返回文章
    返回