留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究

陈惠昌 赖勇 卢海龙 梁金强 陆敬安 方允鑫

陈惠昌, 赖勇, 卢海龙, 梁金强, 陆敬安, 方允鑫. 南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究[J]. 海洋学报, 2018, 40(7): 116-133. doi: 10.3969/j.issn.0253-4193.2018.07.010
引用本文: 陈惠昌, 赖勇, 卢海龙, 梁金强, 陆敬安, 方允鑫. 南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究[J]. 海洋学报, 2018, 40(7): 116-133. doi: 10.3969/j.issn.0253-4193.2018.07.010
Chen Huichang, Lai Yong, Lu Hailong, Liang Jinqiang, Lu Jing'an, Fang Yunxin. Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea[J]. Haiyang Xuebao, 2018, 40(7): 116-133. doi: 10.3969/j.issn.0253-4193.2018.07.010
Citation: Chen Huichang, Lai Yong, Lu Hailong, Liang Jinqiang, Lu Jing'an, Fang Yunxin. Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea[J]. Haiyang Xuebao, 2018, 40(7): 116-133. doi: 10.3969/j.issn.0253-4193.2018.07.010

南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究

doi: 10.3969/j.issn.0253-4193.2018.07.010
基金项目: 中国地质调查局天然气水合物勘查与试采工程(GZH201500306,HD-JJHT-20);科技部重点研发项目(2017YFC0307603)。

Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea

  • 摘要: 南海神狐海域是中国最重要的天然气水合物调查研究区之一,为了解水合物存在对沉积物地球化学环境的影响,对采自神狐海域W19B井位的沉积物样品进行了矿物学和地球化学研究。X射线衍射分析和主量元素结果显示部分层位有异常高含量的硫化物(主要为黄铁矿)。扫描电镜结果表明随着样品深度的增加,黄铁矿的晶面、晶棱更加明显,且集合体形态呈现聚莓→单莓→细粒的变化趋势,扫描电镜还观察到草莓状黄铁矿向细粒自形黄铁矿转化的中间产物。在53.0 mbsf(meters below seafloor)和140.4 mbsf层位均发现异常高含量的黄铁矿。其中140.4 mbsf层位黄铁矿充填有孔虫壳体的现象普遍,并伴有大量柱状黄铁矿产出,可能与有机质和甲烷厌氧氧化相关,但主导作用应为甲烷厌氧氧化,该层位可能位于古硫酸根-甲烷界面(sulfate-methane interface,SMI)附近。根据所得结果,推测地质历史时期中甲烷异常渗漏事件的发生,致使向上的甲烷通量增加,推动SMI上移,导致53.0 mbsf和140.4 mbsf界面处因甲烷厌氧氧化而形成大量黄铁矿。多个黄铁矿富集层的存在可能表示沉积史中曾发生多期次的深部流体渗漏或者天然气水合物的分解活动。
  • Paull C K, Dillon W P. Natural gas hydrates:occurrence, distribution, and detection[M]. Washington D C:American Geophysical Union, 2001.
    Sloan E D, Koh C A. Clathrate hydrates of natural gas, third edition[M]. Boca Raton:CRC Press, 2007.
    Yang H L, Lu H L, Ruffine L. Geochemical characteristics of iron in sediments from the Sea of Marmara[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2018,doi: 10.1016/j.dsr2.2018.01.010.
    Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1998, 45(1/3):517-567.
    Roy O L, Sibuet M, Fiala-Médioni A, et al. Cold seep communities in the deep eastern Mediterranean Sea:composition, symbiosis and spatial distribution on mud volcanoes[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2004, 51(12):1915-1936.
    Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012, s243-244(1):155-168.
    陆红锋, 陈芳, 刘坚, 等. 天然气水合物沉积环境的自生矿物特点及其在南海的发育情况[J]. 南海地质研究, 2006(1):93-104. Lu Hongfeng, Chen Fang, Liu Jian, et al. Authigenic minerals associated with sedimentary environment of gas hydrate deposit and their occurrence in South China Sea[J]. Research of Geological South China Sea, 2006(1):93-104.
    Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey[J]. Marine Geology, 1999, 159(1/4):93-109.
    Chen D F, Liu Q, Zhang Z, et al. Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico[J]. Marine & Petroleum Geology, 2007, 24(5):313-320.
    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1/2):129-150.
    Lin Q, Wang J, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379:100-108.
    Chen D F, Dong F, Zheng S, et al. Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science & Engineering C Biomimetic & Supramolecular Systems, 2006, 26(4):602-605.
    Wang P K, Zhu Y H, Lu Z Q, et al. Geochemistry and genesis of authigenic pyrite from gas hydrate accumulation system in the Qilian Mountain permafrost, Qinghai, northwest China[J]. Science China:Earth Sciences, 2014, 57(9):2217-2231.
    Kocherla M. Authigenic gypsum in gas-hydrate associated sediments from the east coast of India (bay of Bengal)[J]. Acta Geologica Sinica:English Edition, 2013, 87(3):749-760.
    Wang J S, Suess E, Rickert D. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific[J]. Science China:Earth Sciences, 2004, 47(3):280-288.
    张美, 邬黛黛, 吴能友. 南海北部天然气水合物沉积环境中自生矿物特征[J]. 新能源进展, 2016, 4(1):20-27. Zhang Mei, Wu Daidai, Wu Nengyou. Characteristics of authigenic mineral from the northern South China Sea[J]. Advances in New and Renewable Energy, 2016, 4(1):20-27.
    Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth & Planetary Science Letters, 2011, 309(1/2):89-99.
    Kasten S, Nöthen K, Hensen C, et al. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan[J]. Geo-Marine Letters, 2012, 32(5/6):515-524.
    Snyder G T, Dickens G R, Castellini D G. Labile barite contents and dissolved barium concentrations on Blake Ridge:New perspectives on barium cycling above gas hydrate systems[J]. Journal of Geochemical Exploration, 2007, 95(1):48-65.
    Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1075-1090.
    Jørgensen B B, Kasten S. Sulfur Cycling and Methane Oxidation[M]//Marine Geochemistry. Berlin:Springer, 2006:271-309.
    Devol A H, Anderson J J, Kuivila K, et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5):993-1004.
    Iversen N, Jørgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30(5):944-955.
    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[J]. Journal of Biological Chemistry, 2000, 282(31):22499-22512.
    Jørgensen B B, Weber A, Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep-Sea Research Part Ⅰ, 2001, 48(9):2097-2120.
    陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40. Chen Duofu, Chen Xianpei, Chen Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):34-40.
    Lim Y C, Lin S, Yang T F, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J]. Marine & Petroleum Geology, 2011, 28(10):1829-1837.
    林杞, 王家生, 付少英, 等. 南海北部沉积物中单质硫颗粒的发现及意义[J]. 中国科学:地球科学, 2015, 45(11):1747-1756. Lin Qi, Wang Jiasheng, Fu Shaoying, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China:Earth Sciences, 2015, 45(11):1747-1756.
    王家生, 林杞, 李清, 等. 海洋沉积物中AOM成因的自生矿物及其对深时地球古海洋甲烷事件的启示[J]. 第四纪研究, 2015, 35(6):1383-1392. Wang Jiasheng, Lin Qi, Li Qing, et al. AOM-derived authigenic minerals in marine sediments and implication for ancient methane events in deep earth[J]. Quaternary Sciences, 2015, 35(6):1383-1392.
    吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9):1-6. Wu Nengyou, Zhang Haiqi, Yang Shengxiong, et al. Preliminary studies of gas hydrate system in Shenhu area, South China Sea[J]. Natural Gas Industry, 2007, 27(9):1-6.
    雷新民, 张光学, 郑艳. 南海北部神狐海域天然气水合物形成及分布的地质因素[J]. 海洋地质动态, 2009, 25(5):1-5. Lei Xinmin, Zhang Guangxue, Zheng Yan. Geological factors for formation and distribution of natural gas hydrate in Shenhu Sea area, northern South China Sea[J]. Marine Geology Letters, 2009, 25(5):1-5.
    Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8):752-760.
    Wu L S, Yang S X, Liang J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J]. Science China:Earth Sciences, 2013, 56(4):530-540.
    Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositions in a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Science Bulletin, 2011, 56(16):1700-1707.
    谢蕾, 王家生, 林杞. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(3):382-392. Xie Lei, Wang Jiasheng, Lin Qi. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea[J]. Acta Petrologica et Mineralogica, 2012, 31(3):382-392.
    陆红锋, 廖志良, 陈芳, 等. 南海神狐海域天然气水合物钻孔自生黄铁矿特征[J]. 南海地质研究, 2010(1):1-6. Lu Hongfeng, Liao Zhiliang, Chen Fang, et al. Authigenic pyrite in the sediments of gas-hydrate drilling sites, Shenhu area, South China Sea[J]. Geological Research of South China Sea, 2010(1):1-6.
    吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650. Wu Nengyou, Yang Shengxiong, Wang Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6):1641-1650.
    王家豪, 庞雄, 王存武,等. 珠江口盆地白云凹陷中央底辟带的发现及识别[J]. 地球科学:中国地质大学学报, 2006, 31(2):209-213. Wang Jiahao, Pang Xiong, Wang Cunwu, et al. Discovery and recognition of the central diapiric zone in Baiyun depression, Pearl River Mouth basin[J]. Earth Science:Journal of China University of Geosciences, 2006, 31(2):209-213.
    吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544. Wu Lushan, Yang Shengxiong, Liang Jinqiang, et al. Geochemical characteristics of sediments at site HQ-48PC in Qiongdongnan area, the north of the South China Sea, and their implication for gas hydrates[J]. Geoscience, 2010, 24(3):534-544.
    邬黛黛, 吴能友, 付少英, 等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2010, 30(5):41-51. Wu Daidai, Wu Nengyou, Fu Shaoying, et al. Geochemical characteristics of shallow sediments in the gas hydrate distribution area of Dongsha, the Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(5):41-51.
    陆红锋. 南海东沙海区天然气水合物赋存的沉积证据——沉积物矿物学及地球化学特征研究[D]. 广州:中山大学, 2007. Lu Hongfeng. Mineralogy and geochemical studies on sediments from Dongsha area, South China Sea:evidences for gas hydrate occurrence[D]. Guangzhou:Sun Yat-sen University, 2007.
    邬黛黛. 南海天然气水合物的早期成岩作用和地球化学特性研究[D]. 杭州:浙江大学, 2008. Wu Daidai. Early diagenesis records and geochemical characteristics of gas hydrate in the South China Sea[D]. Hangzhou:Zhejiang University, 2008.
    陆红锋, 孙晓明, 张美. 南海天然气水合物沉积物矿物学和地球化学[M]. 北京:科学出版社, 2011. Lu Hongfeng, Sun Xiaoming, Zhang Mei. Mineralogy and Geochemical Studies on Gas Hydrate Sediments from South China Sea[M]. Beijing:Science Press, 2011.
    吴时国, 王秀娟, 陈瑞新, 等. 天然气水合物地质概论[M]. 北京:科学出版社, 2015. Wu Shiguo, Wang Xiujuan, Chen Ruixin, et al. Geology of Gas Hydrate[M]. Beijing:Science Press, 2015.
    初凤友, 陈丽蓉, 申顺喜, 等. 南黄海沉积物中自生黄铁矿的形态标型研究[J]. 海洋与湖沼, 1994, 25(5):461-467. Chu Fengyou, Chen Lirong, Shen Shunxi, et al. Morphological features of authigenic pyrite from South Yellow Sea sediments[J]. Oceanologia et Limnologia Sinica, 1994, 25(5):461-467.
    Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews, 2006, 75(1/4):59-83.
    林荣骁, 王家生, 苏丕波, 等. 南海东北部岩心沉积物磁性特征及对甲烷事件的指示[J]. 沉积学报, 2017, 35(2):290-298. Lin Rongxiao, Wang Jiasheng, Su Pibo, et al. Characteristics of magnetic susceptibility of cored sediments and their implications for the potential methane events in northern South China Sea[J]. Acta Sedimentologica Sinica, 2017, 35(2):290-298.
    Sawlowicz Z. Pyrite framboids and their development:a new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1):148-156.
    Merinero R, Lunar R, Martínez-Frías J, et al. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula)[J]. Marine & Petroleum Geology, 2008, 25(8):706-713.
    Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615.
    Sweeney R E, Kaplan I R. Pyrite Framboid formation:laboratory synthesis and marine sediments[J]. Economic Geology, 1973, 68(5):618-634.
    Berner R A, Leeuw J W D, Spiro B, et al. Sulphate reduction, organic matter decomposition and pyrite formation and discussion[J]. Philosophical Transactions of the Royal Society of London, 1985, 315(1531):25-38.
    Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425):541-546.
    Gartman A, Iii G W L. Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2, nanoparticles found at hydrothermal vents[J]. Geochimica et Cosmochimica Acta, 2013, 120:447-458.
    朱而勤, 王琦. 海洋自生矿物[M]. 北京:海洋出版社, 1988. Zhu Erqin, Wang Qi. Authigenic Minerals in Ocean[M]. Beijing:China Ocean Press, 1988.
    苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3):318-326. Su Ming, Yang Rui, Wu Nengyou, et al. Structural characteristics in the Shenhu Area, northern continental slope of South China Sea, and their influences on gas hydrate[J]. Acta Geologica Sinica, 2014, 88(3):318-326.
  • 加载中
计量
  • 文章访问数:  605
  • HTML全文浏览量:  3
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-04
  • 修回日期:  2018-05-02

目录

    /

    返回文章
    返回