留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SMAP卫星雷达资料的海冰密集度反演技术研究

闻斌 周旋 种劲松 石立坚 叶小敏

闻斌, 周旋, 种劲松, 石立坚, 叶小敏. 基于SMAP卫星雷达资料的海冰密集度反演技术研究[J]. 海洋学报, 2018, 40(6): 29-39. doi: 10.3969/j.issn.0253-4193.2018.06.003
引用本文: 闻斌, 周旋, 种劲松, 石立坚, 叶小敏. 基于SMAP卫星雷达资料的海冰密集度反演技术研究[J]. 海洋学报, 2018, 40(6): 29-39. doi: 10.3969/j.issn.0253-4193.2018.06.003
Wen Bin, Zhou Xuan, Chong Jinsong, Shi Lijian, Ye Xiaomin. Sea ice concentration retrieval based on SMAP radar data[J]. Haiyang Xuebao, 2018, 40(6): 29-39. doi: 10.3969/j.issn.0253-4193.2018.06.003
Citation: Wen Bin, Zhou Xuan, Chong Jinsong, Shi Lijian, Ye Xiaomin. Sea ice concentration retrieval based on SMAP radar data[J]. Haiyang Xuebao, 2018, 40(6): 29-39. doi: 10.3969/j.issn.0253-4193.2018.06.003

基于SMAP卫星雷达资料的海冰密集度反演技术研究

doi: 10.3969/j.issn.0253-4193.2018.06.003
基金项目: 国家自然科学基金项目(41276185,41406215)。

Sea ice concentration retrieval based on SMAP radar data

  • 摘要: SMAP是美国于2015年初发射的一颗卫星,搭载了L波段的雷达。它采用圆锥扫描方式,具有固定的入射角、较大的幅宽和千米级的分辨率,在海冰监测方面具有独特的优势。本文利用SMAP卫星雷达资料分别与德国Bremen大学海冰密集度产品和美国国家冰雪数据中心(NSIDC)海冰密集度产品建立3.125 km和25 km匹配数据集,分析了L波段雷达后向散射系数、极化比和归一化极化差与海冰密集度之间相关性,建立基于人工神经网络的海冰密集度反演算法。为了验证SMAP卫星雷达资料反演海冰密集度的精度,本文选择德国Bremen大学和美国冰雪数据中心发布的海冰密集度产品分别与SMAP海冰密集度产品进行对比分析,SMAP海冰密集度与Bremen海冰密集度的偏差为0.07、均方根误差为0.14;与NSIDC海冰密集度的偏差为0.04、均方根误差为0.18,这表明SMAP海冰密集度产品与现有业务化海冰密集度产品具有很好的一致性。
  • Karvonen J. Baltic sea ice concentration estimation based on C-band HH-polarized SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(6):1874-1884.
    Karvonen J. Baltic sea ice concentration estimation based on C-Band dual-polarized SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5558-5566.
    Karvonen J. A sea ice concentration estimation algorithm utilizing radiometer and SAR data[J]. The Cryosphere, 2014, 8(5):1639-1650.
    Berg A, Eriksson L E B. SAR algorithm for sea ice concentration-evaluation for the baltic sea[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):938-942.
    Aldenhoff W, Berg A, Eriksson L E B. Sea ice concentration estimation from sentinel-1 synthetic aperture radar images over the fram strait[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016:7675-7677.
    Wang Lei, Scott K A, Xu Linlin, et al. Sea ice concentration estimation during melt from Dual-Pol SAR scenes using deep convolutional neural networks:a case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4524-4533.
    Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978-1996[J]. Journal of Geophysical Research:Oceans, 1999, 104(C9):20837-20856.
    Synder J P. Map Projection Used by the U. S. Geological Survey[M]. Washington, D.C.:U.S. Geological Survey Bulletin, 1982.
    Spreen G, Kalechke L, Heygster G. Sea ice remote sensing using AMSR-E 89 GHz channels[J]. Journal of Geophysical Research:Oceans, 2008, 113(C2):C02S03.
    Haykin S S. Neural Networks, A Comprehensive Foundation[M]. 2nd ed. Englewood Cliffs:Prentice-Hall, 1999:183-196.
    Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Network, 1989, 2(5):359-366.
    Kaleschke L, Lüpkes C, Vihma T, et al. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis[J]. Canadian Journal of Remote Sensing, 2001, 27(5):526-537.
    Markus T, Cavalieri D J. An enhancement of the NASA team sea ice algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1387-1398.
    Zhou Xuan, Chong Jinsong, Yang Xiaofeng, et al. Ocean surface wind retrieval using SMAP L-Band SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1):65-74.
  • 加载中
计量
  • 文章访问数:  735
  • HTML全文浏览量:  12
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-10-19

目录

    /

    返回文章
    返回