留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双曲余弦海脊上海啸俘获波的解析与数值研究

王岗 胡见 王培涛 张振伟

王岗, 胡见, 王培涛, 张振伟. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5): 15-23. doi: 10.3969/j.issn.0253-4193.2018.05.002
引用本文: 王岗, 胡见, 王培涛, 张振伟. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5): 15-23. doi: 10.3969/j.issn.0253-4193.2018.05.002
Wang Gang, Hu Jian, Wang Peitao, Zhang Zhenwei. Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge[J]. Haiyang Xuebao, 2018, 40(5): 15-23. doi: 10.3969/j.issn.0253-4193.2018.05.002
Citation: Wang Gang, Hu Jian, Wang Peitao, Zhang Zhenwei. Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge[J]. Haiyang Xuebao, 2018, 40(5): 15-23. doi: 10.3969/j.issn.0253-4193.2018.05.002

双曲余弦海脊上海啸俘获波的解析与数值研究

doi: 10.3969/j.issn.0253-4193.2018.05.002
基金项目: 国家重点研发计划(2017YFC1404205);国家自然科学基金面上项目(51579090);福建省科技计划项目(2015Y0035)。

Analytical and numerical investigation of tsunami trapped waves over a hyperbolic-cosine squared ocean ridge

  • 摘要: 海啸能被大洋海脊引导以俘获波的形式沿其传播上万千米,且因其特殊的运动方式,携带巨大能量影响远场地区的港口,严重威胁海岸安全。本文首先基于线性浅水方程,推导了双曲余弦平方海脊上俘获波的波面解,其为μν次的连带勒让德函数的第一类解和第二类解的组合。进一步推导出其对应的频散关系,其中对于确定的频率ω,存在无穷多个波数ky与之对应。采用MIKE21-BW模型,模拟了产生于海脊脊顶处的海啸在理想双曲余弦平方海脊上的传播变形过程。结果表明,小部分能量以自由先驱波进行传播,海啸波的波能大部分被海脊俘获。海脊俘获波沿着海脊方向为行进波,随着海啸波传播时间的增加,波浪在沿着海脊方向的延展范围也逐渐增大,波高逐渐减小、波的个数逐渐增加。俘获波能量主要由不同频率以相同速度传播的具有孤立波特性的波浪成分和能量主要集中在特定频率范围内的波浪成分组成。
  • Wilson R I, Admire A R, Borrero J C, et al. Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA)[J]. Pure and Applied Geophysics, 2013, 170(6/8):1127-1147.
    于福江, 原野, 赵联大, 等. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 2011, 56(3):239-246. Yu Fujiang, Yuan Ye, Zhao Lianda, et al. Evaluation of potential hazards from teletsunami in China:tidal observations of a teletsunami generated by the Chile 8.8 Mw earthquake[J]. Chinese Science Bulletin, 2011, 56(3):239-246.
    Titov V, Rabinovich A B, Mofjeld H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743):2045-2048.
    Rabinovich A B, Candella R N, Thomson R E. Energy decay of the 2004 Sumatra tsunami in the world ocean[J]. Pure and Applied Geophysics, 2011, 168(11):1919-1950.
    Rabinovich A B, Lobkovsky L I, Fine I V, et al. Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007[J]. Advances in Geosciences, 2008, 14:105-116.
    Seo S N, Liu P L F. Edge waves generated by atmospheric pressure disturbances moving along a shoreline on a sloping beach[J]. Coastal Engineering, 2014, 85:43-59.
    Seo S N, Liu P L F. Edge waves generated by the landslide on a sloping beach[J]. Coastal Engineering, 2013, 73:133-150.
    Longuet-Higgins M S. On the trapping of wave energy round islands[J]. Journal of Fluid Mechanics, 1967, 29(4):781-821.
    Niu Xiaojing, Yu Xiping. Analytic solution of long wave propagation over a submerged hump[J]. Coastal Engineering, 2011, 58(2):143-150.
    Jones D S. The eigenvalues of ▽2u+λu=0 when the boundary conditions are given on semi-infinite domains[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(4):668-684.
    Longuet-Higgins M S. On the trapping of waves along a discontinuity of depth in a rotating ocean[J]. Journal of Fluid Mechanics, 1968, 31(3):417-434.
    Buchwald V T. Long waves on oceanic ridges[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1969, 308(1494):343-354.
    Shaw R P, Neu W. Long-wave trapping by oceanic ridges[J]. Journal of Physical Oceanography, 1981, 11(10):1334-1344.
    Zheng Jinhai, Xiong Mengjie, Wang Gang. Trapping mechanism of submerged ridge on trans-oceanic tsunami propagation[J]. China Ocean Engineering, 2016, 30(2):271-282.
    Titov V V, Synolakis C E. Modeling of breaking and nonbreaking long-wave evolution and runup using vtcs-2[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1995, 121(6):308-316.
    Oishi Y, Imamura F, Sugawara D. Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model:application to the 2011 Tohoku-Oki earthquake combined with source inversions[J]. Geophysical Research Letters, 2015, 42(4):1083-1091.
    Grilli S T, Ioualalen M, Asavanant J, et al. Source constraints and model simulation of the December 26, 2004, Indian ocean tsunami[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6):414-428.
    Wang G, Hu J, Zheng J H, et al. Trapped waves over the hyperbolic-cosine ocean ridge[C]//Proceedings of the 9th International Conference on Asia and Pacific Coasts (APAC 2017). Pasay City, Philippine:World Scientific Publishing Co Pte Ltd, 2017:44-54.
    Madsen P A, Murray R, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics[J]. Coastal Engineering, 1991, 15(4):371-388.
    Madsen P A, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1192, 18(3/4):183-204.
    Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2):1018-1040.
  • 加载中
计量
  • 文章访问数:  898
  • HTML全文浏览量:  22
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-02-04

目录

    /

    返回文章
    返回