Alt J C, Lonsdale P, Haymon R, et al. Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise[J]. Geological Society of America Bulletin, 1987, 98(2):157-168.
|
Hekinian R, Francheteau J, Renard V, et al. Intense hydrothermal activity at the axis of the east pacific rise near 13°N:sumbersible witnesses the growth of sulfide chimney[J]. Marine Geophysical Researches, 1983, 6(1):1-14.
|
彭晓彤, 周怀阳. EPR 9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科D辑:地球科学, 2005, 35(8):720-728. Peng Xiaotong, Zhou Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N:a structural and mineralogical study[J]. Science in China Series D:Earth Sciences, 2005, 35(8):720-728.
|
Rona P A. Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1):1-104.
|
Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17):3511-3524.
|
曾志刚, 秦蕴珊, 赵一阳, 等. 大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋与湖沼, 2000, 31(5):518-529. Zeng Zhigang, Qin Yunshan, Zhao Yiyang, et al. Sulfur isotopic composition of seafloor surface hydrothermal sediments in the TAG hydrothermal field of Mid-Atlantic Ridge and its geological implications[J]. Oceanologia et Limnologia Sinica, 2000, 31(5):518-529.
|
蒋少涌, 杨涛, 李亮, 等. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究[J]. 岩石学报, 2006, 22(10):2597-2602. Jiang Shaoyong, Yang Tao, Li Liang, et al. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Acta Petrologica Sinica, 2006, 22(10):2597-2602.
|
Craig H, Horibe Y, Fariey K A, et al. Hydrothermal vents in the Mariana Trough:results of the first Alvin dives[J]. EOS, 1987, 68:1531.
|
Fouquet Y, Charlou J L, Stackelberg U, et al. Metallogenesis in back-arc environments:the Lau Basin example[J]. Economic Geology, 1993, 88:2154-2181.
|
Fryer P. Geology of the mariana trough[M]//Taylor B. Back-Arc Basins:Tectonics and Magmatism. New York:Springer, 1995:237-279.
|
Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56'E-Mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001, 177(3/4):341-349.
|
Baker E T, Edmonds H N, Michael P J, et al. Hydrothermal venting in magma deserts:the ultraslow-spreading gakkel and southwest Indian ridges[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8):Q08002.
|
孙治雷, 周怀阳, 杨群慧, 等. 现代洋底低温富Si烟囱体的构建:以劳盆地CDE热液场为例[J]. 中国科学:地球科学, 2012, 42(10):1544-1558. Sun Zhilei, Zhou Huaiyang, Yang Qunhui, et al. Growth model of a hydrothermal low-temperature Si-rich chimney:example from the CDE hydrothermal field, Lau Basin[J]. Science China Earth Sciences, 2012, 55(10):1716-17360.
|
Herzig P M, Plueger W L. Exploration for hydrothermal activity near the Rodriguez triple junction, Indian Ocean[J]. The Canadian Mineralogist, 1988, 26(3):721-736.
|
翟世奎, 于增慧, 杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报, 2007, 29(1):58-65. Zhai Shikui, Yu Zenghui, Du Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Haiyang Xuebao, 2007, 29(1):58-65.
|
Tucholke B E, Lin J. A geological model for the structure of ridge segments in slow spreading ocean crust[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B6):11937-11958.
|
Augustin N, Paulick H, Lackschewitz K S, et al. Alteration at the ultramafic-hosted Logatchev hydrothermal field:Constraints from trace element and Sr-O isotope data[J]. Geochemistry Geophysics Geosystems, 2012, 13(3):Q0AE07.
|
Zhou Haiyang, Dick H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 2013, 494(7436):195-200.
|
Wetzel L R, Shock E L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B4):8319-8340.
|
Mozgova N N, Efimov A V, Borodaev Y S, et al. Mineralogy and chemistry of massive sulfides from the Logatchev hydrothermal field (14°45'N Mid-Atlantic Ridge)[J]. Exploration and Mining Geology, 1999, 8(3/4):379-395.
|
Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system:from serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides[J]. Marine Geology, 2007, 245(1/4):20-39.
|
Charlou J L, Donval J P, Konn C, et al. High production of H2 and CH4 and abiotic hydrocarbons in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2010, 74(12):A163.
|
Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 2003, 206(3/4):509-528.
|
Mendel V, Sauter D, Parson L, et al. Segmentation and morphotectonic variations along a super slow-spreading center:the southwest Indian ridge (57°E-70°E)[J]. Marine Geophysical Researches, 1997, 19(6):505-533.
|
Payot B D, Arai S, Dick H J B, et al. Podiform chromitite formation in a low-Cr/high-Al system:An example from the Southwest Indian Ridge (SWIR)[J]. Mineralogy & Petrology, 2014, 108(4):533-549.
|
Michael P J, Langmuir C H, Dick H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean[J]. Nature, 2003, 423(6943):956-961.
|
Sauter D, Cannat M, Mendel V. Magnetization of 0-26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°-67°E[J]. Geochemistry Geophysics Geosystems, 2008, 9(4):1-23.
|
Searle R C, Bralee A V. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64°E[J]. Geochemistry Geophysics Geosystems, 2007, 8(5):1-28.
|
Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7):605-608.
|
Nayak B, Halbach P, Pracejus B, et al. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis[J]. Ore Geology Reviews, 2014, 63:115-128.
|
Fujimoto H, Cannat M, Fujioka K, et al. First submersible investigations of mid-ocean ridges in the Indian Ocean[J]. Inter Ridge News, 1999, 8(1):22-24.
|
Fleet M E. Structural aspects of the marcasite-pyrite transformation[J]. The Canadian Mineralogist, 1970, 10(2):225-231.
|
Koski R A, Clague D A, Oudin E. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge[J]. Geological Society of America Bulletin, 1984, 95(8):930-945.
|
Graham U M, Bluth G J, Ohmoto H. Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes; Part Ⅰ, mineralogy and paragenesis[J]. The Canadian Mineralogist, 1988, 26(3):487-504.
|
Caye R, Cervelle B, Cesbron F, et al. Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3[J]. Mineralogical Magazine, 1988, 52(367):509-514.
|
Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350℃ and 300℃[J]. Economic Geology, 1975, 70(4):806-823.
|
Lusk J, Bray D M. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu-Fe-S and Fe-S systems at 1 bar and temperatures between 185 and 460℃[J]. Chemical Geology, 2002, 192(3/4):227-248.
|
Mozgova N N, Efimov A V, Borodaev Y S, et al. Mineralogy and chemistry of massive sulfides from the Logatchev hydrothermal field (14°45'N Mid-Atlantic Ridge)[J]. Exploration & Mining Geology, 1999, 8(3):379-395.
|
Blackman D K, Karson J A, Kelley D S, et al. Geology of the Atlantis massif (Mid-Atlantic Ridge, 30°N):implications for the evolution of an ultramafic oceanic core complex[J]. Marine Geophysical Researches, 2002, 23(5/6):443-469.
|
Hannington M D, De Ronde C D J. Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Colorado, USA:Society of Economic Geologists, Inc., 2005:111-141.
|
陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):1812-1822. Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59(19):2266-2276.
|
Gülaçar O F, Delaloye M. Geochemistry of nickel, cobalt and copper in alpine-type ultramafic rocks[J]. Chemical Geology, 1976, 17:269-280.
|
Shiga Y. Behavior of iron, nickel, cobalt and sulfur during serpentinization, with reference to the hayachine ultramafic rocks of the kamaishi mining district, northeastern japan[J]. The Canadian Mineralogist, 1987, 25(4):611-624.
|
Alt J C, Shanks W C. Sulfur contents and S, C and O isotopic compositions in serpentinized peridotites at ODP Site 153-920[Z]. Geochimica et Cosmochimica Acta, 2003,67(4), 641-653.
|
Devey C W, German C R, Haase K M, et al. The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C.:American Geophysical Union, 2010:8499-8527.
|
Ringwood A E. The principles governing trace element distribution during magmatic crystallization Part Ⅰ:The influence of electronegativity[J]. Geochimica et Cosmochimica Acta, 1955, 7(3/4):189-202.
|
Trefry J H, Butterfield D B, Metz S, et al. Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B3):4925-4935.
|
Maslennikov V V, Maslennikova S P, Khadisov M B. Comparative analysis of accessory mineral associations in hydrothermal sulfide sediments and products of their submarine supergenesis[J]. Metallogeniya Drevnikh i Sovremennykh Okeanov Materialy Nauchnoy Studencheskoy Shkoly, 2009, 15:247-251.
|
Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41(1):52-67.
|
Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26):2828-2838.
|
Ye Jun, Shi Xuefa, Yang Yaomin, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E[J]. Acta Oceanologica Sinica, 2012, 31(6):72-82.
|
Haymon R M, Kastner M. The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21°N[J]. Geochimica et Cosmochimica Acta, 1986, 50(9):1933-1939.
|
Koski R A, Jonasson I R, Kadko D C, et al. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B3):4813-4832.
|
Tivey M K, Delaney J R. Growth of large sulfide structures on the Endeavour Segment of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 1986, 77(3/4):303-317.
|
Bischoff J L, Rosenbauer R J. The critical point and two-phase boundary of seawater, 200-500℃[J]. Earth and Planetary Science Letters, 1984, 68(1):172-180.
|
Seyfried Jr W E, Foustoukos D I, Allen D E. Ultramafic-hosted hydrothermal systems at mid-ocean ridges:chemical and physical controls on pH, redox and carbon reduction reactions[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges. Washington, DC:American Geophysical Union, 2004:267-284.
|
Murowchick J B, Barnes H L. Marcasite precipitation from hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 1986, 50(12):2615-2629.
|
Rona P A, Bogdanov Y A, Gurvich E G, et al. Relict hydrothermal zones in the TAG hydrothermal field, Mid-Atlantic Ridge 26°N, 45°W[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6):9715-9730.
|
Lalou C, Reyss J L, Brichet E, et al. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B9):17855-17862.
|
Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45'N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos, 2009, 112(1):40-56.
|
German C R, Klinkhammer G P, Rudnicki M D. The rainbow hydrothermal plume, 36°15'N, MAR[J]. Geophysical Research Letters, 1996, 23(21):2979-2982.
|
Beltenev V E, Ivanov V N, Rozhdestvenskaya I I, et al. A new hydrothermal field at 13°30'N on the Mid-Atlantic Ridge[J]. InterRidge News, 2007, 16:9-10.
|
Beltenev V E, Nescheretov A V, Shilov V V, et al. New discoveries at 12°58'N, 44°52'W, MAR:Professor Logatchev-22 cruise, initial results[J]. InterRidge News, 2003, 12(1):13-14.
|
Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat:the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 2008, 275(1/2):61-69.
|
Wang Yejian, Han Xiqiu, Petersen S, et al. Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge[J]. Marine Geology, 2014, 354:69-80.
|