留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高频ADCP资料的磨刀门河口羽状流湍流动力特征

黎为 任杰

黎为, 任杰. 基于高频ADCP资料的磨刀门河口羽状流湍流动力特征[J]. 海洋学报, 2018, 40(3): 16-24. doi: 10.3969/j.issn.0253-4193.2018.03.002
引用本文: 黎为, 任杰. 基于高频ADCP资料的磨刀门河口羽状流湍流动力特征[J]. 海洋学报, 2018, 40(3): 16-24. doi: 10.3969/j.issn.0253-4193.2018.03.002
Li Wei, Ren Jie. The dynamic characteristics of turbulence in the Modaomen Estuary river plume based on the ADCP data[J]. Haiyang Xuebao, 2018, 40(3): 16-24. doi: 10.3969/j.issn.0253-4193.2018.03.002
Citation: Li Wei, Ren Jie. The dynamic characteristics of turbulence in the Modaomen Estuary river plume based on the ADCP data[J]. Haiyang Xuebao, 2018, 40(3): 16-24. doi: 10.3969/j.issn.0253-4193.2018.03.002

基于高频ADCP资料的磨刀门河口羽状流湍流动力特征

doi: 10.3969/j.issn.0253-4193.2018.03.002
基金项目: 国家自然科学基金资助项目(41476072)。

The dynamic characteristics of turbulence in the Modaomen Estuary river plume based on the ADCP data

  • 摘要: 利用1 200 kHz的宽频RDI ADCP于2015年7月在磨刀门河口拦门沙前缘的浅水站和沿岸流影响的深水站进行座底观测,采样频率为1 Hz,数据经滤波去噪处理,应用方差方法分析了磨刀门的羽状流湍流动力特征。结果表明,磨刀门河口水流表现出3层流结构,峰值流速出现在表层的羽状流层,深水区雷诺应力量级为10-3~10-5 m2/s2,小于拦门沙前缘的湍流脉动强度;拦门沙前缘和深水区湍流动能密度参数的范围均在0.01~0.6 m2/s2左右,羽状流的湍动能比底边界层高一个数量级。拦门沙前缘羽状流的湍动能生成率量级约为10-3 W/kg,比底层大2~3个量级,且远强于深水区;垂直涡黏系数的大小约为0~0.15 m2/s。总的来说,羽状流表现出层化稳定、混合强烈,以及高的湍动能生成率,为羽状流携带高浊度悬沙离岸远距离搬运提供了湍流动力条件。
  • Lohrmann A, Hackett B, Røed L P. High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(1):19-37.
    Lu Y, Lueck R G. Using a broadband ADCP in a tidal channel. Part Ⅱ:Turbulence[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16:1568-1579.
    Stacey M T, Monismith S G, Burau J R. Measurements of Reynolds stress profiles in unstratified tidal flow[J]. Journal of Geophysical Research, 1999, 104(C5):10933-10949.
    Williams E, Simpson J H. Uncertainties in estimate of Renolds stress and TKE production rate using the ADCP variance method[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2):347-357.
    Rippeth T P, Simpson J H, Williams E, et al. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow:Red Wharf Bay revisited[J]. Journal of Physical Oceanography, 2003, 33(9):1889-1901.
    黎为. 基于ADCP高频观测资料的磨刀门湍流动力特征[D]. 广州:中山大学, 2016. Li Wei. The dynamic characteristics of turbulence in the Modaomen Estuary based on the ADCP data[D]. Guangzhou:Sun Yat-sen University, 2016.
    刘欢, 吴超羽, 许炜铭, 等. 珠江河口底边界层湍流特征量研究[J]. 海洋工程, 2009, 27(1):62-76. Liu Huan, Wu Chaoyu, Xu Weiming, et al. Research on turbulent features of the bottom boundary layer in the Pearl River[J]. The Ocean Engineering, 2009, 27(1):62-76.
    王建丰. 河口羽扩展研究以及潮平均混合参数化[D]. 青岛:中国海洋大学, 2013. Wang Jianfeng. The impact of river discharge, tidal range, wind on river plume spreading and tidal average mixing parameterization[D]. Qingdao:Ocean University of China, 2013.
    Grant W D, Madsen O S. The continental-shelf bottom boundary layer[J]. Annual Review of Fluid Mechanics, 1986, 18(1):265-305.
    吕华庆. 物理海洋学基础[M]. 北京:海洋出版社, 2012:69-70. Lü Huaqing. The Basic of Physical Oceanography[M]. Beijing:China Ocean Press, 2012:69-70.
  • 加载中
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  4
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28

目录

    /

    返回文章
    返回