留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底多金属硫化物自然电位观测方式研究

汪建军 陶春辉 王华军 邓显明 熊威 李泽

汪建军, 陶春辉, 王华军, 邓显明, 熊威, 李泽. 海底多金属硫化物自然电位观测方式研究[J]. 海洋学报, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007
引用本文: 汪建军, 陶春辉, 王华军, 邓显明, 熊威, 李泽. 海底多金属硫化物自然电位观测方式研究[J]. 海洋学报, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007
Wang Jianjun, Tao Chunhui, Wang Huajun, Deng Xianming, Xiong Wei, Li Ze. Study of self-potential observation ways in the seafloor polymetallic sulfide deposits[J]. Haiyang Xuebao, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007
Citation: Wang Jianjun, Tao Chunhui, Wang Huajun, Deng Xianming, Xiong Wei, Li Ze. Study of self-potential observation ways in the seafloor polymetallic sulfide deposits[J]. Haiyang Xuebao, 2018, 40(1): 57-67. doi: 10.3969/j.issn.0253-4193.2018.01.007

海底多金属硫化物自然电位观测方式研究

doi: 10.3969/j.issn.0253-4193.2018.01.007
基金项目: 国际海域资源调查与开发"十二五"重大项目(DY125-11-R-01,DY125-11-R-03);973计划(2012CB417305)。

Study of self-potential observation ways in the seafloor polymetallic sulfide deposits

  • 摘要: 利用海洋自然电位法可以探测海底多金属硫化物矿体的位置和轮廓。在调查过程中,可以进行水平观测和垂直观测,本文对这两种观测方式的探测效果进行数值模拟分析,结果表明垂直观测异常大,对矿体的横向分辨率高。但在进行垂直观测时,电极离底低,工作风险大。所以在实际调查过程中,需要根据需求选择合适的观测方式。另外,在实际测量过程中,电极对会偏离垂直方向和水平方向,将导致异常结果发生变化,因此在数据资料处理与解释过程中要注意。本文可以为海底多金属硫化物自然电位调查提供参考。
  • Corry C E. Spontaneous polarization associated with porphyry sulfide mineralization[J]. Geophysics, 1985, 50(6):1020-1034.
    仇勇海. 金属矿自然电位的空间分布及其应用[J]. 物探与化探, 1985, 9(4):268-273. Qiu Yonghai. Spatial distribution of spontaneous potential of metallic oreboby and its application[J]. Geophysical and Geochemical Exploration, 1985, 9(4):268-273.
    熊威,陶春辉,邓显明. 电磁方法在海底多金属硫化物探测中的应用[J]. 海洋学研究, 2013, 31(2):59-64. Xiong Wei, Tao Chunhui, Deng Xianming. Application of electromagnetic methods in detection of seafloor polymetallic sulfides[J]. Journal of Marine Sciences, 2013, 31(2):59-64.
    Corwin R F. Offshore application of self-potential prospecting[D]. Berkeley:University of California, 1973.
    Corwin R F. Offshore use of the self-potential method[J]. Geophysical Prospecting, 1976, 24(1):79-90.
    Brewitt-Taylor C R. Self-potential prospecting in the deep oceans[J]. Geology, 1975, 3(9):541-542.
    Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45'N, Mid-Atlantic Ridge:evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3):245-252.
    Lipton I. Mineral resource estimate Solwara 1 project Bismarck Sea Papua New Guinea for Nautilus Minerals Inc:Technical report[R]. Technical Report Canadian NI43-101 form, 2008.
    Uglov B D. Determination of the form of ore bodies of deep sulfides deposits to assess their resources potential[C]//Ores and Metals Meeting Abstracts(RUS). 2013.
    Tao C, Deng X, Wu G, et al. Transient electromagnetic and electric self-potential survey in the TAG hydrothermal field in MAR[C]//AGU Fall Meeting Abstracts. 2012.
    Heinson G, White A, Constable S, et al. Marine self potential exploration[J]. Exploration Geophysics, 1999, 30(2):1-4.
    Gramberg I S, Kaminsky V D, Kunin A E. New data on hydrothermal activity and sulphides mineralization at 12°40'-12°50' N obtained by deep-towed system "Rift"[J]. Dokladi Akademii Nauk, 1992, 323:865-867.
    袁桂琴, 熊盛青, 孟庆敏,等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1744-1805. Yuan Guiqin, Xiong Shengqing, Meng Qingmin, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11):1744-1805.
    Accerboni E, Mosetti F. A physical relationship among salinity, temperature and electrical conductivity of seawater[J]. Bol. Geof. Teor. Appl, 1967, 9:87-96.
    Becker K, Von Herzen R P, Francis T J G, et al. In situ electrical resistivity and bulk porosity of the oceanic crust Costa Rica Rift[J]. Nature, 1982, 300(5893):594-598.
    邵珂,陈建平,任梦依. 印度洋中脊多金属硫化物矿产资源定量预测与评价[J]. 海洋地质与第四纪地质, 2015, 35(5):125-133. Shao Ke, Chen Jianping, Ren Mengyi. Quantitative prediction and evaluation of polymetallic sulfide mineral deposits along the Central Indian Ocean Ridge[J]. Marine Geology & Quaternary Geology, 2015, 35(5):125-133.
    Drury M J, Hyndman R D. The electrical resistivity of oceanic basalts[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4537-4545.
    Tao C H, Wu T, Jin X B, et al. Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field[J]. Acta Oceanologica Sinica, 2013, 32(12):118-125.
    李金铭. 地电场与电法勘探[M]. 北京:地质出版社, 2005. Li Jinming. Geoelectric Field and Electrical Exploration[M]. Beijing:Geological Publishing House, 2005.
    王凯, 刘宽厚, 耿涛, 等. 德尔尼矿区和外围自然电场异常特征及其找矿意义[J]. 甘肃冶金, 2007, 29(6):25-28. Wang Kai, Li Kuanhou, Geng Tao, et al. Abnormity characteristics of SP method and significance of ore prospecting in Der'erny mining area and its periphery[J]. Gansu Metallurgy, 2007, 29(6):25-28.
    Goldie M. Self-potentials associated with the Yanacocha high-sulfidation gold deposit in Peru[J]. Geophysics, 2002, 67(3):684-689.
    Sato M, Mooney H M. The electrochemical mechanism of sulfide self potentials[J]. Geophysics, 1960, 25(1):226-249.
    Jones, E. J W. Marine Geophysics[M]. Wiley, 1999.
    薛琴访. 场论[M]. 北京:地质出版社, 1978. Xue Qinfang. Field Theories[M]. Beijing:Geological Publishing House, 1978.
    范业活, 关继腾, 王克文. 离子导电岩石自然电位特性的机理研究[J]. 物探与化探, 2005, 29(3):239-242. Fan Yehuo, Guan Jiteng, Wang Kewen. The mechanism of spontaneous potential characteristics of rocks with ionic conductivity[J]. Geophysical and Geochemical Exploration, 2005, 29(3):239-242.
    Jansen J, Billington N, Snider F, et al. Marine SP surveys for dam seepage investigations:Evaluation of array geometries through modeling and field trials[J]. Journal of Environmental and Engineering Geophysics, 1996, 1(1):37-45.
    何继善. 海洋电磁法原理[M]. 北京:高等教育出版社, 2012. He Jishan. Marine Electromagnetic Principle[M]. Beijing:Higher Education Press, 2012.
    Heinson G, White A, Robinson D, et al. Marine self-potential gradient exploration of the continental margin[J]. Geophysics, 2005, 70(5):109-118.
    Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45'N, Mid-Atlantic Ridge:evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3):245-252.
    张先健. 深海拖曳式自然电位法技术研究[D]. 杭州:杭州电子科技大学, 2011. Zhang Xianjian. Deep sea drap type self-potential method technology research[D]. Hangzhou:Hangzhou Dianzi University, 2011.
  • 加载中
计量
  • 文章访问数:  980
  • HTML全文浏览量:  22
  • PDF下载量:  840
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04

目录

    /

    返回文章
    返回