留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值模式的南海北部深层内潮季节变化特征分析

张小将 孙惠 冀承振

张小将, 孙惠, 冀承振. 基于数值模式的南海北部深层内潮季节变化特征分析[J]. 海洋学报, 2018, 40(1): 10-16. doi: 10.3969/j.issn.0253-4193.2018.01.002
引用本文: 张小将, 孙惠, 冀承振. 基于数值模式的南海北部深层内潮季节变化特征分析[J]. 海洋学报, 2018, 40(1): 10-16. doi: 10.3969/j.issn.0253-4193.2018.01.002
Zhang Xiaojiang, Sun Hui, Ji Chengzhen. Numerical simulation of internal tides seasonal variations in the deep northern South China Sea[J]. Haiyang Xuebao, 2018, 40(1): 10-16. doi: 10.3969/j.issn.0253-4193.2018.01.002
Citation: Zhang Xiaojiang, Sun Hui, Ji Chengzhen. Numerical simulation of internal tides seasonal variations in the deep northern South China Sea[J]. Haiyang Xuebao, 2018, 40(1): 10-16. doi: 10.3969/j.issn.0253-4193.2018.01.002

基于数值模式的南海北部深层内潮季节变化特征分析

doi: 10.3969/j.issn.0253-4193.2018.01.002
基金项目: 国家重点基础研究发展计划项目(2014CB745003)。

Numerical simulation of internal tides seasonal variations in the deep northern South China Sea

  • 摘要: 本文基于MITgcm非静力数值模式,采用实际地形、层结和潮流强迫,开展南海北部内潮数值模拟敏感性试验,分析夏冬两个季节南海北部深层内潮的差异。结果显示在南海北部深层,冬季K1和M2内潮流速振幅比夏季强10.1%和44.7%。垂向模态分析结果进一步表明,尽管南海北部深层冬季第一模态内潮动能密度比夏季低15.5%,但第二和第三模态内潮则是冬季比夏季高约25.1%和33.2%,导致冬季深层流速的垂向剪切大于夏季,表明冬季较强的高模态内潮可能是冬季南海深层强混合的一个原因。
  • Balmforth N J, Ierley G R, Young W R. Tidal conversion by subcritical topography[J]. Journal of Physical Oceanography, 2002, 32(10):2900-2914.
    Laurent L S, Stringer S, Garrett C, et al. The generation of internal tides at abrupt topography[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2003, 50(8):987-1003.
    方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛:中国海洋大学出版社, 2005. Fang Xinhua, Du Tao. Fundamental of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao:China Ocean University Press, 2005.
    Legg S, Huijts K M H. Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2006, 53(1/2):140-156.
    Nikurashin M, Ferrari R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography:Theory[J]. Journal of Physical Oceanography, 2010, 40(5):1055-1074.
    Munk W, Wunsch C. Abyssal recipes Ⅱ:energetics of tidal and wind mixing[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1998, 45(12):1977-2010.
    Wunsch C. Oceanography:Moon, tides and climate[J]. Nature, 2000, 405(6788):743-744.
    Lien R C, Tang T Y, Chang M H, et al. Energy of nonlinear internal waves in the South China Sea[J]. Geophysical Research Letters, 2005, 32(5):L05615.
    Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4):1105-1130.
    Jan S, Chern C S, Wang J, et al. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea[J]. Journal of Geophysical Research:Oceans, 2007, 112(C6):C06019.
    Shaw P T, Ko D S, Chao S Y. Internal solitary waves induced by flow over a ridge:with applications to the northern South China Sea[J]. Journal of Geophysical Research:Oceans, 2009, 114(C2):C02019.
    杨庆轩. 吕宋海峡通量及南海混合研究[D]. 青岛:中国海洋大学, 2008. Yang Qingxuan. Study on the Fluxes in the Luzon strait and turbulent mixing in the South China Sea[D]. Qingdao:Ocean University of China Press, 2008.
    Buijsman M C, Kanarska Y, McWilliams J C. On the generation and evolution of nonlinear internal waves in the South China Sea[J]. Journal of Geophysical Research:Oceans, 2010, 115(C2):C02012.
    Tian Jiwei, Yang Qingxuan, Zhao Wei. Enhanced diapycnal mixing in the South China Sea[J]. Journal of Physical Oceanography, 2009, 39(12):3191-3203.
    Zhou Chun, Zhao Wei, Tian Jiwei, et al. Variability of the deep-water overflow in the Luzon Strait[J]. Journal of Physical Oceanography, 2014, 44(11):2972-2986.
    梁辉, 郑洁, 田纪伟. 南海西北陆坡区部内潮与近惯性内波观测研究[J]. 海洋学报, 2016, 38(11):32-42. Liang Hui, Zheng Jie, Tian Jiwei. Observation of internal tides and near-inertial internal waves on the continental slope in the northwestern South China Sea[J]. Haiyang Xuebao, 2016, 38(11):32-42.
    Matsuyama M. Numerical experiments of internal tides in Suruga Bay[J]. Journal of the Oceanographical Society of Japan, 1985, 41(3):145-156.
    Llewellyn Smith S G, Young W R. Conversion of the barotropic tide[J]. Journal of Physical Oceanography, 2002, 32(5):1554-1566.
    Niwa Y, Hibiya T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea[J]. Journal of Geophysical Research:Oceans, 2004, 109(C4):C04027.
  • 加载中
计量
  • 文章访问数:  963
  • HTML全文浏览量:  5
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10

目录

    /

    返回文章
    返回