留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋海表温度融合产品交叉比对分析

奚萌 宋清涛 李文君 邹斌 林明森

奚萌, 宋清涛, 李文君, 邹斌, 林明森. 西北太平洋海表温度融合产品交叉比对分析[J]. 海洋学报, 2017, 39(12): 136-152. doi: 10.3969/j.issn.0253-4193.2017.12.013
引用本文: 奚萌, 宋清涛, 李文君, 邹斌, 林明森. 西北太平洋海表温度融合产品交叉比对分析[J]. 海洋学报, 2017, 39(12): 136-152. doi: 10.3969/j.issn.0253-4193.2017.12.013
Xi Meng, Song Qingtao, Li Wenjun, Zou Bin, Lin Mingsen. Intercomparison analysis of merging sea surface temperature products for the Northwest Pacific Ocean[J]. Haiyang Xuebao, 2017, 39(12): 136-152. doi: 10.3969/j.issn.0253-4193.2017.12.013
Citation: Xi Meng, Song Qingtao, Li Wenjun, Zou Bin, Lin Mingsen. Intercomparison analysis of merging sea surface temperature products for the Northwest Pacific Ocean[J]. Haiyang Xuebao, 2017, 39(12): 136-152. doi: 10.3969/j.issn.0253-4193.2017.12.013

西北太平洋海表温度融合产品交叉比对分析

doi: 10.3969/j.issn.0253-4193.2017.12.013
基金项目: 海洋公益性行业科研专项经费项目"HY-2卫星海洋动力环境探测数据应用服务技术系统与示范"(201305032);基金面上项目"大气对小尺度海表温度结构的响应(41276019)";国家基金委——山东省联合基金项目"海洋环境动力学和数值模拟"(U1606405)。

Intercomparison analysis of merging sea surface temperature products for the Northwest Pacific Ocean

  • 摘要: 海表温度产品是研究全球海洋大气系统的重要数据源,在海洋相关领域的研究和应用方面具有重要价值。以西北太平洋海域为研究区域,本文对2007-2014年的3个海表温度融合数据(AVHRR OISST,MISST和OSTIA)的产品特性与Argo浮标进行了真实性检验,并对融合产品进行了交叉比对分析。结果表明,3个融合产品在空间尺度上均能反映西北太平洋海域的海表温度变化趋势。融合数据与Argo浮标的平均偏差在±0.1℃之间,均方根误差小于0.9℃。融合数据与浮标数据存在明显的季节性变化,其中冬季融合数据与浮标数据的平均偏差和均方根误差较小。在高纬海域,融合产品和浮标存在正偏差。与另两个融合产品相比,OSTIA的数据质量与Argo浮标最为接近。3个融合产品在近岸和高纬海域差异较大,三者对海冰的标识和处理方式不同对融合结果也有影响。在2012年6月之前MISST和OSTIA的海表温度数据质量更为接近,但在此之后MISST存在系统误差。红外数据、微波数据和实测数据作为输入数据,是制作高时空分辨率高精度海表温度融合产品必不可少的要素。
  • 蒋兴伟,宋清涛. 海洋卫星微波遥感技术发展现状与展望[J]. 科技导报, 2010, 28(3):105-111. Jiang Xingwei, Song Qingtao. Satellite microwave measurements of the global oceans and future missions[J]. Science Guide, 2010, 28(3):105-111.
    Reynolds R W, Chelton D B. Comparisons of daily sea surface temperature analyses for 2007-08[J]. American Meteorological Society, 2010, 23:3545-3562.
    Martin M, Dash P, Ignatov A, et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fieldsinter-comparisons. Part 1:A GHRSST multi-product ensemble (GMPE)[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 77-80:21-30.
    Dash P, Ignatov A, Martin M, et al. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons. Part 2:Near real time web-based level 4 SST Quality Monitor (L4-SQUAM)[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 77-80:31-43.
    蒋兴伟, 奚萌, 宋清涛. 六种遥感海表温度产品的比对分析[J]. 海洋学报, 2013, 35(4):88-97. Jiang Xingwei, Xi Meng, Song Qingtao. A comparison of six sea surface temperature analyses[J]. Haiyang Xuebao, 2013, 35(4):88-97.
    胡晓悦, 张彩云, 商少凌. 南海及周边海域融合海表温度产品的验证与互较[J]. 遥感学报, 2015, 19(2):328-338. Hu Xiaoyue, Zhang Caiyun, Shang Shaoling. Validation and inter-comparison of multi-satellite merged sea surface temperature products in the South China Sea and its adjacent waters[J]. Journal of Remote Sensing, 2015,19(2):328-338.
    Donlon C, Rayner N, Robinson I, et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project[J]. Bulletin of the American Meteorological Society, 2007, 88(8):1197-1213.
    Reynolds R W, Smith T M, Liu C, et al. Daily high-resolution blended analyses for sea surface temperature[J]. Journal of Climate, 2007,20(22):5473-5496.
    Gentemann C L, Donlon C J, Stuart-Menteth A, et al. Diurnal signals in satellite sea surface temperature measurements[J]. Geophysical Research Letters, 2003, 30(3):1140.
    Reynolds R W, Gentemann C L, Corlett G K. Evaluation of AATSR and TMI satellite SST data[J]. Journal of Climate, 2010,23(1):152-165.
    Argo Science Team. Argo:The global array of profiling floats, in observing the oceans in the 21st Century[R]. GODAE Project Office, 2001:248-258.
    Roemmich D, Owensw B. The ARGO Project:global ocean observations for understanding and prediction of climate variability[J]. Oceanography, 2000, 13(2):45-50.
    Marcello J, Eugenio F, Hernandez A. Validation of MODIS and AVHRR/3 sea surface temperature retrieval algorithms[J]. Geoscience and Remote Sensing Symposium, 2004, 2:839-842.
    Bailey S W, Werdell P J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products[J]. Remote Sensing of Environment, 2006, 102(1/2):12-23.
    奚萌,宋清涛, 林明森, 等. 西北太平洋多源微波辐射计海表温度数据交叉比对分析[J]. 海洋学报, 2016, 38(7):32-47. Xi Meng, Song Qingtao, Lin Mingsen,et al. Intercomparison analysis of multi-microwave radiometer sea surface temperature data for the Northwest Pacific[J]. Haiyang Xuebao, 2016, 38(7):32-47.
    奚萌, 宋清涛, 林明森,等. 西北太平洋红外辐射计海表温度数据交叉比对分析[J]. 海洋与湖沼, 2017, 48(3):436-453. Xi Meng, Song Qingtao, Lin Mingsen, et al. Intercomparison analysis of multi-infrared sea surface temperature data for the Northwest Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(3):436-453.
    Ricciardulli L, Wentz F J. Uncertainties in sea surface temperature retrievals from space:Comparison of microwave and infrared observations from TRMM[J]. Journal of Geophysical Research, 2004, 109(C12):481-497.
    Xie J P, Zhu J, Li Y. Assessment and inter comparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China[J]. Continental Shelf Research, 2008, 28(10/11):1286-1293.
    奚萌. 基于最优插值算法的红外和微波遥感海表温度数据融合[D]. 北京:国家海洋环境预报研究中心,2011. Xi Meng. Merging infrared radiometer and microwave radiometer sea surface temperature data based on the optimum interpolation[D]. Beijing:National Marine Environmental Forecasting Research Center, 2011.
  • 加载中
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  12
  • PDF下载量:  886
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-26
  • 修回日期:  2017-05-13

目录

    /

    返回文章
    返回