留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪水槽中振动格栅湍流特征的实验研究

马洪余 戴德君 乔方利 蒋暑民

马洪余, 戴德君, 乔方利, 蒋暑民. 波浪水槽中振动格栅湍流特征的实验研究[J]. 海洋学报, 2017, 39(12): 12-19. doi: 10.3969/j.issn.0253-4193.2017.12.002
引用本文: 马洪余, 戴德君, 乔方利, 蒋暑民. 波浪水槽中振动格栅湍流特征的实验研究[J]. 海洋学报, 2017, 39(12): 12-19. doi: 10.3969/j.issn.0253-4193.2017.12.002
Ma Hongyu, Dai Dejun, Qiao Fangli, Jiang Shumin. An experimental study on characteristics of turbulence generated by oscillating grids in a wave tank[J]. Haiyang Xuebao, 2017, 39(12): 12-19. doi: 10.3969/j.issn.0253-4193.2017.12.002
Citation: Ma Hongyu, Dai Dejun, Qiao Fangli, Jiang Shumin. An experimental study on characteristics of turbulence generated by oscillating grids in a wave tank[J]. Haiyang Xuebao, 2017, 39(12): 12-19. doi: 10.3969/j.issn.0253-4193.2017.12.002

波浪水槽中振动格栅湍流特征的实验研究

doi: 10.3969/j.issn.0253-4193.2017.12.002
基金项目: 海洋上层混合过程参数化及实验验证(2016YFC1401403);国家自然科学基金项目(41276035,40876015);国际合作项目"海洋动力系统和多运动形态相互作用"(GASI-IPOVAI-05)。

An experimental study on characteristics of turbulence generated by oscillating grids in a wave tank

  • 摘要: 在波浪水槽中采用格栅振动的方式产生湍流,研究振动格栅产生湍流的特征。本文开展了4类实验,调节测量点到格栅平均位置的距离、格栅振动频率、振动冲程,采用ADV测量水体中单点的脉动速度。实验结果显示,湍流强度在一定范围内随离格栅距离的增大而逐渐减小,随着振动频率的增大而呈幂指数增大,随着振动冲程的增大而呈幂指数增大。同时还比较了两个不同格栅产生湍流的不同。结果显示,在波浪水槽中,振动格栅产生湍流的强度还与格栅的长度尺寸有关,这与在水箱中振动格栅产生湍流的特征不同。
  • Rouse H. Experiments on the mechanics of sediment suspension[C]//Proceedings of the 5th international congress of applied mechanics. Cambridge, MA, 1939:550-554.
    Rouse H, Dodu J. Turbulent diffusion across a density discontinuity[J]. La Houille Blanche, 1955, 10(4):522-532.
    Thompson S M, Turner J S. Mixing across an interface due to turbulence generated by an oscillating grid[J]. Journal of Fluid Mechanics, 1975, 67(2):349-368.
    Hopfinger E J, Toly J A. Spatially decaying turbulence and its relation to mixing across density interfaces[J]. Journal of Fluid Mechanics, 1976, 78(1):155-175.
    Brumley B H, Jirka G H. Near-surface turbulence in a grid-stirred tank[J]. Journal of Fluid Mechanics, 1987, 183:235-263.
    De Silva I P D, Fernando H J S. Oscillating grids as a source of nearly isotropic turbulence[J]. Physics of Fluids, 1994, 6(7):2455-2464.
    Variano E A, Cowen E A. A random-jet-stirred turbulence tank[J]. Journal of Fluid Mechanics, 2008, 604:1-32.
    Maxey M R. The velocity skewness measured in grid turbulence[J]. Physics of Fluids, 1987, 30(4):935-938.
    Douady S, Couder Y, Brachet M E. Direct observation of the intermittency of intense vorticity filaments in turbulence[J]. Physical Review Letters, 1991, 67(8):983-986.
    Villermaux E, Sixou B, Gagne Y. Intense vortical structures in grid-generated turbulence[J]. Physics of Fluids, 1995, 7(8):2008-2013.
    Srdic A, Fernando H J S, Montenegro L. Generation of nearly isotropic turbulence using two oscillating grids[J]. Experiments in Fluids, 1996, 20(5):395-397.
    Shy S S, Tang C Y, Fann S Y. A nearly isotropic turbulence generated by a pair of vibrating grids[J]. Experimental Thermal and Fluid Science, 1997, 14(3):251-262.
    Voth G A, Satyanarayan K, Bodenschatz E. Lagrangian acceleration measurements at large Reynolds numbers[J]. Physics of Fluids, 1998, 10(9):2268-2280.
    Liu S, Katz J, Meneveau C. Evolution and modelling of subgrid scales during rapid straining of turbulence[J]. Journal of Fluid Mechanics, 1999, 387:281-320.
    Birouk M, Sarh B, Gökalp I. An attempt to realize experimental isotropic turbulence at low Reynolds number[J]. Flow, Turbulence and Combustion, 2003, 70(1/4):325-348.
    Hwang W, Eaton J K. Creating homogeneous and isotropic turbulence without a mean flow[J]. Experiments in Fluids, 2004, 36(3):444-454.
    Webster D R, Brathwaite A, Yen J. A novel laboratory apparatus for simulating isotropic oceanic turbulence at low Reynolds number[J]. Limnology and Oceanography:Methods, 2004, 2(1):1-12.
    Mcdougall T J. Measurements of turbulence in a zero-mean-shear mixed layer[J]. Journal of Fluid Mechanics, 1979, 94(3):409-431.
    Variano E A, Bodenschatz E, Cowen E A. A random synthetic jet array driven turbulence tank[J]. Experiments in Fluids, 2004, 37(4):613-615.
    Krawczynski J F, Renou B, Danaila L. The structure of the velocity field in a confined flow driven by an array of opposed jets[J]. Physics of Fluids, 2010, 22(4):045104.
    Goepfert C, Marié J L, Chareyron D, et al. Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets[J]. Experiments in Fluids, 2010, 48(5):809-822.
    Bellani G, Variano E A. Homogeneity and isotropy in a laboratory turbulent flow[J]. Experiments in Fluids, 2014, 55(1):1-12.
    Hunt J C R, Graham J M R. Free-stream turbulence near plane boundaries[J]. Journal of Fluid Mechanics, 1978, 84(2):209-235.
    Corrsin S. Turbulence:experiment methods[J]. Handbuch der Physik, Stromungs Mechanik, 1963, 8:524-587.
    Xuequan E, Hopfinger E J. On mixing across an interface in stably stratified fluid[J]. Journal of Fluid Mechanics, 1986, 166:227-244.
    Cheng N S, Law A W K. Measurements of turbulence generated by oscillating grid[J]. Journal of Hydraulic Engineering, 2001, 127(3):201-208.
    Yi Y K, Lyn D A. Scaling and inhomogeneities in oscillating-grid flows[C]//Building Partnerships. ASCE, 2000:1-10.
    王得祥, 王得军, 李艳. 水槽中振动格栅紊流特性实验研究[J]. 华北水利水电学院学报, 2007, 28(2):19-21. Wang Dexiang, Wang Dejun, Li Yan. Experimental study on characteristics of oscillating-grid turbulence in flume[J]. Journal of North China Institute of Water Consercancy and Hydrielectric Power, 2007, 28(2):19-21.
    Thais L, Magnaudet J. Turbulent structure beneath surface gravity waves sheared by the wind[J]. Journal of Fluid Mechanics, 1996, 328:313-344.
    Atkinson J F, Damiani L, Harleman D R F. A comparison of velocity measurements using a laser anemometer and a hotfilm probe, with application to grid-stirring entrainment experiments[J]. Physics of Fluids (1958-1988), 1987, 30(10):3290-3292.
    Zedel L, Hay A E, Cabrera R, et al. Performance of a single-beam pulse-to-pulse coherent Doppler profiler[J]. IEEE Journal of Oceanic Engineering, 1996, 21(3):290-297.
    Lohrmann A, Cabrera R, Kraus N C. Acoustic-Doppler velocimeter (ADV) for laboratory use[C]//Fundamentals and advancements in hydraulic measurements and experimentation. ASCE, 1994:351-365.
    Cabrera R, Deines K, Brumley B, et al. Development of a practical coherent acoustic Doppler current profiler[C]//OCEANS'87. IEEE, 1987:93-97.
    Lhermitte R, Lemmin U. Open-channel flow and turbulence measurement by high-resolution Doppler sonar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(5):1295-1308.
    Mori N, Suzuki T, Kakuno S. Noise of acoustic Doppler velocimeter data in bubbly flows[J]. Journal of Engineering Mechanics, 2007, 133:122-125.
    Martin V, Fisher T S R, Millar R G, et al. ADV data analysis for turbulent flows:Low correlation problem[C]//Proceedings of Hydraulic Measurements and Experimental Methods Conference. 2002.
    Elgar S, Raubenheimer B, Guza R T. Quality control of acoustic Doppler velocimeter data in the surfzone[J]. Measurement Science and Technology, 2005, 16(10):1889-1893.
    Goring D G, Nikora V I. Despiking acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2002, 128(1):117-126.
    Wahl T L. Discussion of "Despiking acoustic Doppler velocimeter data" by Derek G. Goring and Vladimir I.Nikora[J]. Journal of Hydraulic Engineering, 2002, 128(1):117-126.
    Ölmez H S, Milgram J H. An experimental study of attenuation of short water waves by turbulence[J]. Journal of Fluid Mechanics, 1992, 239:133-156.
  • 加载中
计量
  • 文章访问数:  866
  • HTML全文浏览量:  10
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-04-11

目录

    /

    返回文章
    返回