留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北太平洋Explorer Ridge热液羽状流位温浊度异常和物质能量通量估算

郭双喜 鲁远征 岑显荣 屈玲 Sharon L. Walker 周生启

郭双喜, 鲁远征, 岑显荣, 屈玲, Sharon L. Walker, 周生启. 东北太平洋Explorer Ridge热液羽状流位温浊度异常和物质能量通量估算[J]. 海洋学报, 2017, 39(12): 1-11. doi: 10.3969/j.issn.0253-4193.2017.12.001
引用本文: 郭双喜, 鲁远征, 岑显荣, 屈玲, Sharon L. Walker, 周生启. 东北太平洋Explorer Ridge热液羽状流位温浊度异常和物质能量通量估算[J]. 海洋学报, 2017, 39(12): 1-11. doi: 10.3969/j.issn.0253-4193.2017.12.001
Guo Shuangxi, Lu Yuanzheng, Cen Xianrong, Qu Ling, Sharon L. Walker, Zhou Shengqi. Temperature and turbidity anomalies and flux estimation of hydrothermal plume in Explorer Ridge in the Northeast Pacific Ocean[J]. Haiyang Xuebao, 2017, 39(12): 1-11. doi: 10.3969/j.issn.0253-4193.2017.12.001
Citation: Guo Shuangxi, Lu Yuanzheng, Cen Xianrong, Qu Ling, Sharon L. Walker, Zhou Shengqi. Temperature and turbidity anomalies and flux estimation of hydrothermal plume in Explorer Ridge in the Northeast Pacific Ocean[J]. Haiyang Xuebao, 2017, 39(12): 1-11. doi: 10.3969/j.issn.0253-4193.2017.12.001

东北太平洋Explorer Ridge热液羽状流位温浊度异常和物质能量通量估算

doi: 10.3969/j.issn.0253-4193.2017.12.001
基金项目: 国家自然科学基金(41406035,41476167,41606010);中科院战略性先导专项(XDA11030301);广东省自然科学基金(2016A030311042,2016A030313155)。

Temperature and turbidity anomalies and flux estimation of hydrothermal plume in Explorer Ridge in the Northeast Pacific Ocean

  • 摘要: 深海热液流体与周围海水之间存在明显的物理和化学差异,通过检测海水的位温浊度异常是探测深海热液活动的重要手段之一。本文采用"海底火山带项目(Submarine Ring of Fire 2002)"拖曳式温盐深测量仪数据资料,研究了东北太平洋Explorer Ridge热液场的水文特征及物质能量通量的释放。结果表明Explorer Ridge热液场热液羽状流中性浮力层所在深度范围约为1 600~1 900 m,距离海底的高度约为200 m,最大位温、盐度和浊度异常分别为0.04℃、0.004和0.18 NTU;中性浮力层热液羽状流帽呈椭圆结构,其长轴与洋中脊线重合,羽状流帽总面积约为27 km2;热液羽状流在中性层范围内存在明显的分层现象,通过经验公式计算得到Explorer Ridge热液场观测范围内热液喷口的总的浮力通量为6.19×10-2 m4/s3,平均值为2.063×10-2 m4/s3;总的体积通量为9.884×10-2 m3/s,平均值为3.295×10-2 m3/s;总的热通量为194.9 MW,平均值为64.967 MW。
  • 孙枢. 大洋钻探与中国地球科学[J]. 地球科学进展, 1995, 10(3):213-214. Sun Shu. Ocean drilling and earth science in China[J]. Advance in Earth Sciences, 1995, 10(3):213-214.
    Reysenbach A L, Cady S L. Microbiology of ancient and modern hydrothermal systems[J]. Trends in Microbiology, 2001, 9(2):79-86.
    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1):191-224.
    Hahm D, Baker E T, Siek Rhee T, et al. First hydrothermal discoveries on the Australian-Antarctic Ridge:Discharge sites, plume chemistry, and vent organisms[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9):3061-3075.
    Xu G, Jackson D R, Bemis K G, et al. Time-series measurement of hydrothermal heat flux at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2014, 404:220-231.
    Bemis K G, Silver D, Xu G, et al. The path to COVIS:A review of acoustic imaging of hydrothermal flow regimes[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2015, 121:159-176.
    Mittelstaedt E, Escartín J, Gracias N, et al. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(4):Q04008.
    栾锡武, 秦蕴珊. 现代海底热液活动的调查研究方法[J]. 地球物理学进展, 2002, 17(4):592-597. Luan Xiwu, Qin Yunshan. Survey methods of modern hydrothermal activity[J]. Progress in Geophysics, 2002, 17(4):592-597.
    Baker E T. Exploring the ocean for hydrothermal venting:New techniques, new discoveries, new insights[J]. Ore Geology Reviews, 2017, 86:55-69.
    Lowell R P, Rona P A, Von Herzen R P. Seafloor hydrothermal systems[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B1):327-352.
    翟世奎, 王兴涛, 于增慧, 等. 现代海底热液活动的热和物质通量估算[J]. 海洋学报, 2005, 27(2):115-121. Zhai Shikui, Wang Xingtao, Yu Zenghui, et al. Heat and mass flux estimation of modern seafloor hydrothermal activity[J]. Haiyang Xuebao, 2005, 27(2):115-121.
    Tunnicliffe V, Botros M, De Burgh M E, et al. Hydrothermal vents of Explorer ridge, northeast Pacific[J]. Deep-Sea Research Part A:Oceanographic Research Papers, 1986, 33(3):401-412.
    Uda M. Oceanography of the subarctic Pacific Ocean[J]. Journal of the Fisheries Board of Canada, 1963, 20(1):119-179.
    Ueno H, Yasuda I. Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region[J]. Journal of Geophysical Research:Oceans, 2000, 105(C7):16885-16897.
    Ueno H, Oka E, Suga T, et al. Seasonal and interannual variability of temperature inversions in the subarctic North Pacific[J]. Geophysical Research Letters, 2005, 32(20):2444.
    Ueno H, Yasuda I. Temperature inversions in the subarctic North Pacific[J]. Journal of Physical Oceanography, 2005, 35(12):2444-2456.
    Masuda S, Awaji T, Sugiura N, et al. Interannual variability of temperature inversions in the subarctic North Pacific[J]. Geophysical Research Letters, 2006, 33(24):194-199.
    Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes:Global distributions and geological inferences[M]//Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. Washington, D. C.:American Geophysical Union, 1995:47-71.
    王晓媛, 武力, 曾志刚, 等. 海底热液柱温度异常自动化计算方法探讨[J]. ????????????????):185-191. Wang Xiaoyuan, Wu Li, Zeng Zhigang, et al. Automatic calculation on the temperature anomaly of marine hydrothermal plume[J]. Haiyang Xuebao, 2012, 33(2):185-191.
    陈小丹, 梁楚进, 董昌明. 西南印度洋龙旂热液区羽流信号的检测与通量估算[J]. 海洋学研究, 2015, 33(4):43-52. Chen Xiaodan, Liang Chujin, Dong Changming. Detection and flux estimation of hydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean[J]. Journal of Marine Sciences, 2015, 33(4):43-52.
    Lupton J E, Delaney J R, Johnson H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes[J]. Nature, 1985, 316(6029):621-623.
    Oliver M A, Webster R. Kriging:a method of interpolation for geographical information systems[J]. International Journal of Geographical Information System, 1990, 4(3):313-332.
    McDuff R E, Lupton J E, Kadko D, et al. Chemistry of hydrothermal fluids, Endeavor Ridge, northeast Pacific[J]. Eos Trans. AGU, 1984, 65:975.
    Turner J S. Buoyancy Effects in Fluids[M]. Cambridge:Cambridge University Press, 1979.
    Rudnicki M D, Elderfield H. Theory applied to the Mid-Atlantic Ridge hydrothermal plumes:The finite-difference approach[J]. Journal of Volcanology and Geothermal Research, 1992, 50(1/2):161-172.
    Baker E T, Massoth G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean[J]. Earth and Planetary Science Letters, 1987, 85(1/3):59-73.
    Thomson R E, Delaney J R, McDuff R E, et al. Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988[J]. Earth and Planetary Science Letters, 1992, 111(1):141-154.
    Baker E T, Massoth G J, Walker S L, et al. A method for quantitatively estimating diffuse and discrete hydrothermal discharge[J]. Earth and Planetary Science Letters, 1993, 118(1/4):235-249.
    Baker E T. A 6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth, 1994, 9
  • 加载中
计量
  • 文章访问数:  1087
  • HTML全文浏览量:  6
  • PDF下载量:  721
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-05-15

目录

    /

    返回文章
    返回