留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SWAN模型中不同风拖曳力系数对风浪模拟的影响

丁磊 于博

丁磊, 于博. SWAN模型中不同风拖曳力系数对风浪模拟的影响[J]. 海洋学报, 2017, 39(11): 14-23. doi: 10.3969/j.issn.0253-4193.2017.11.002
引用本文: 丁磊, 于博. SWAN模型中不同风拖曳力系数对风浪模拟的影响[J]. 海洋学报, 2017, 39(11): 14-23. doi: 10.3969/j.issn.0253-4193.2017.11.002
Ding Lei, Yu Bo. Impact of wind drag coefficients on wave simulation using SWAN model[J]. Haiyang Xuebao, 2017, 39(11): 14-23. doi: 10.3969/j.issn.0253-4193.2017.11.002
Citation: Ding Lei, Yu Bo. Impact of wind drag coefficients on wave simulation using SWAN model[J]. Haiyang Xuebao, 2017, 39(11): 14-23. doi: 10.3969/j.issn.0253-4193.2017.11.002

SWAN模型中不同风拖曳力系数对风浪模拟的影响

doi: 10.3969/j.issn.0253-4193.2017.11.002
基金项目: 国家自然科学基金项目(41276016);国家科技支撑计划资助项目(2010BAC68B04);天津科技大学科学研究基金资助项目(20130113)。

Impact of wind drag coefficients on wave simulation using SWAN model

  • 摘要: 本文以荷兰哈灵水道海域为实验区域,通过敏感性实验,研究了在14 m/s、31.5 m/s和50 m/s(分别代表一般大风、强热带风暴和强台风的极端条件)定常风速下SWAN模型中不同风拖曳力系数对风浪模拟的影响程度。结果表明,对于近岸浅水区域(水深小于20 m),风拖曳力系数计算方案的选择对有效波高影响较小,而且当风速增加到一定程度后,波浪破碎成为影响波高值的主要因素;对于深水区域(水深大于30 m),一般大风条件下风拖曳力系数计算方案的选择对有效波高影响仍然较小,随着风速的继续增大,风拖曳力系数计算方案的选择对有效波高的影响逐渐显著。对于平均周期,风拖曳力系数计算方案的选择和风速的改变对其影响均较小,而由水深变浅导致的波浪破碎对其影响较为显著。根据敏感性实验结果,本文对SWAN模型中风拖曳力系数计算方案的选择做出如下建议:计算近岸浅水区域风浪场或深水区域一般大风条件风浪场时,其风拖曳力系数可以直接采用模型默认选项;而对于深水区域更大风速条件,可首先采用模型默认选项试算,然后结合当地海域实测波浪资料进行修正。
  • 徐福敏, 张长宽, 陶建峰. 浅水波浪数值模型SWAN的原理及应用综述[J]. 水科学进展, 2004, 15(4):538-542. Xu Fumin, Zhang Changkuan, Tao Jianfeng. Mechanism and application of a third generation wave model SWAN for shallow water[J]. Advances in Water Science, 2004, 15(4):538-542.
    杨德周, 尹宝树, 徐艳青, 等. SWAN浅水波浪模式在渤海的应用研究——Phillips线性增长比例系数的改进[J]. 水科学进展, 2005, 16(5):710-714. Yang Dezhou, Yin Baoshu, Xu Yanqing, et al. Application of the SWAN wave model to Bohai Sea: Improvement of Phillips linear growth term[J]. Advances in Water Science, 2005, 16(5):710-714.
    夏波, 张庆河, 杨华. 水动力时空变化对近岸风浪演化的影响——以渤海湾西南岸为例[J]. 海洋通报, 2006, 25(5):1-8. Xia Bo, Zhang Qinghe, Yang Hua. Influence of hydrodynamic factors on nearshore wind waves—the southwest coast of the Bohai Bay as an example[J]. Marine Scicence Bulletin, 2006, 25(5):1-8.
    贾晓, 潘军宁, Niclasen B. SWAN模型风能输入项的改进与验证[J]. 河海大学学报, 2010, 38(5):585-591. Jia Xiao, Pan Junning, Niclasen B. Improvement and validation of wind energy input in SWAN model[J]. Journal of Hohai University, 2010, 38(5):585-591.
    宋伟伟, 陈国平, 严士常, 等. 基于台风浪后报模型的外海重现期波浪要素分析[J]. 水运工程, 2013(1):51-54. Song Weiwei, Chen Guoping, Yan Shichang, et al. Wave parameters analysis of different return period in the open sea with a hindcast model of typhoon waves[J]. Port & Waterway Engineering, 2013(1):51-54.
    罗蒋梅, 潘静, 杨支中. 海面风应力拖曳系数参数化方案对风暴潮数值模拟的影响[J]. 海洋预报, 2011, 28(3):15-19. Luo Jiangmei, Pan Jing, Yang Zhizhong. Impact of the parameterization scheme about sea surface wind stress drag coefficients on numerical simulation of strom surge[J]. Marine Forcasts, 2011, 28(3):15-19.
    Garratt J R. Review of drag coefficients over oceans and continents[J]. Monthly Weather Review, 1977, 105:915-929.
    Large W G, Pond S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3):324-336.
    Wu J. Wind-stress coefficients over sea surface from breeze to hurricane[J]. Journal of Geophysical Research, 1982, 87(C12):9704-9706.
    Jarosz E, Mitchell D A, Wang D W, et al. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone[J]. Science, 2007, 315(5819):1707-1709.
    Peng S, Li Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J]. Scientific Reports, 2015, 5:1-6.
    Weisberg R H, Zheng L. Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region[J]. Journal of Geophysical Research, 2008, 113(C12):C12001.
    Oey L Y, Ezer T, Wang D P, et al. Loop current warming by Hurricane Wilma[J]. Geophysical Research Letters, 2006, 33(8):L08613.
    Powell M D, Vickery P J, Reinhold T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929):279-283.
    Zhao Zhongkuo, Liu Chunhua, Li Qi, et al. Typhoon air-sea drag coefficient in coastal regions[J]. Journal of Geophysical Research, 2015, 120(2):716-727.
    Zijlema M, van Vledder G P, Holthuijsen L H. Bottom friction and wind drag for wave models[J]. Coastal Engineering, 2012, 65:19-26.
    Holthuijsen L H, Powell M D, Pietrzak J D. Wind and waves in extreme hurricanes[J]. Journal of Geophysical Research, 2012, 117(C9):C09003.
    The SWAN team. SWAN user manual[D]. Delft: Delft University of Technology, 2016.
    Huang Y, Weisberg R H, Zheng L, et al. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike[J]. Journal of Geophysical Research, 2013, 118(8):3916-3938.
    Ris R C, Holthuijsen L H, Booij N. A third-generation wave model for coastal regions 2. Verification[J]. Journal of Geophysical Research, 1999, 104(C4):7667-7681.
  • 加载中
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  16
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2017-03-14

目录

    /

    返回文章
    返回