留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国近岸多室草苔虫(Bugula neritina)的群体遗传分化研究

李海 刘巧红 唐雪颖 陈武个 丁少雄

李海, 刘巧红, 唐雪颖, 陈武个, 丁少雄. 我国近岸多室草苔虫(Bugula neritina)的群体遗传分化研究[J]. 海洋学报, 2017, 39(10): 90-100. doi: 10.3969/j.issn.0253-4193.2017.10.008
引用本文: 李海, 刘巧红, 唐雪颖, 陈武个, 丁少雄. 我国近岸多室草苔虫(Bugula neritina)的群体遗传分化研究[J]. 海洋学报, 2017, 39(10): 90-100. doi: 10.3969/j.issn.0253-4193.2017.10.008
Li Hai, Liu Qiaohong, Tang Xueying, Chen Wuge, Ding Shaoxiong. Population genetic variation study of Bugula neritina in coastal waters of China[J]. Haiyang Xuebao, 2017, 39(10): 90-100. doi: 10.3969/j.issn.0253-4193.2017.10.008
Citation: Li Hai, Liu Qiaohong, Tang Xueying, Chen Wuge, Ding Shaoxiong. Population genetic variation study of Bugula neritina in coastal waters of China[J]. Haiyang Xuebao, 2017, 39(10): 90-100. doi: 10.3969/j.issn.0253-4193.2017.10.008

我国近岸多室草苔虫(Bugula neritina)的群体遗传分化研究

doi: 10.3969/j.issn.0253-4193.2017.10.008
基金项目: 国家海洋局公益性项目"几种重要海洋药用生物种质资源发掘、保藏和利用——重要海洋药用生物优良种质评价和筛选"(201205024-2)。

Population genetic variation study of Bugula neritina in coastal waters of China

  • 摘要: 基于线粒体控制区序列和SLAF-seq,对重要药源生物多室草苔虫的群体遗传分化水平开展了研究。控制区序列中检测到8个单倍型,单倍型多样性(h)和核苷酸多样性(π)分别为0.130 7和0.000 7,单倍型网络图和NJ系统进化树的结构都较简单,无明显拓扑结构。中性检验和核苷酸不配对分析结果均表明多室草苔虫未经历过大规模群体扩张。Fst和AMOVA分析显示遗传变异主要来自于群体内。SLAF建库共开发得到214 409个SLAF标签,其中多态性SLAF标签23 437个,共开发出99 432个SNP位点。群体间的遗传距离较小,且低于群体内的遗传距离。基于SNP所做的系统发育树和群体遗传结构分析表明,各群体之间没有显著的遗传结构。综上所述,我国沿海多室草苔虫的遗传多样性水平较低,不同地理群体之间不存在显著的遗传结构。多室草苔虫较强的扩散能力是造成上述结果的主要原因。另外,本研究还验证和讨论了SLAF-seq应用在海洋生物群体遗传分化研究中的可行性和优势。
  • 刘锡兴, 尹学明, 马江虎. 中国海洋污损苔虫生物学[M]. 北京:科学出版社, 2001:79-467. Liu Xixing, Yin Xueming, Ma Jianghu. Biology of Marine-fouling Bryozoans in the Coastal Waters of China[M]. Beijing:Science Press, 2001:79-467.
    林厚文, 易杨华, 姚新生, 等. 中国南海总合草苔虫抗癌活性成分研究(Ⅳ) Bryostatin 8, 16的分离与结构鉴定[J]. 中国海洋药物, 2001, 20(4):1-6. Lin Houwen, Yi Yanghua, Yao Xinsheng, et al. Studies on antineoplastic constituents from marine bryozoan Bugula neritina inhabiting South China Sea (Ⅳ):isolation and structural elucidation of bryostatins 8 and 16[J]. Chinese Journal of Marine Drugs, 2001, 20(4):1-6.
    林厚文, 易杨华, 姚新生, 等. 中国南海总合草苔虫抗癌活性成分研究——Ⅱ总草苔虫内酯的超强抗癌活性[J]. 中国海洋药物, 2000, 19(2):1-3. Lin Houwen, Yi Yanghua, Yao Xinsheng, et al. Studies on the antineoplastic constituents from marine bryozoan Bugula neritina inhabiting South China Sea (Ⅱ):remarkable antineoplastic activities of active principals[J]. Chinese Journal of Marine Drugs, 2000, 19(2):1-3.
    Lei Hui, Zhou Xuefeng, Yang Yaling, et al. Bryostatins from South China Sea bryozoan Bugula neritina L.[J]. Biochemical Systematics and Ecology, 2010, 38(6):1231-1233.
    Lopanik N, Gustafson K R, Lindquist N. Structure of bryostatin 20:a symbiont-produced chemical defense for larvae of the host bryozoan, Bugula neritina[J]. Journal of Natural Products, 2004, 67(8):1412-1414.
    孙鹏, 李玲, 易杨华, 等. 总合草苔虫中抗癌活性成分的提取和含量测定[J]. 第二军医大学学报, 2002, 23(3):240-242. Sun Peng, Li Ling, Yi Yanghua, et al. Extraction and quantitative determination of antineoplastic constituents in Bugula neritina L.[J]. Academic Journal of Second Military Medical University, 2002, 23(3):240-242.
    Kraft A S, Smith J B, Berkow R L. Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60[J]. Proceedings of the National Academy of Sciencesof the United States of America, 1986, 83(5):1334-1338.
    Kuzirian A M, Epstein H, Gagliardi C J, et al. Bryostatin enhancement of memory in Hermissenda[J]. The Biological Bulletin, 2006, 210(3):201-214.
    Parkinson D R, Arbuck S G, Moore T, et al. Clinical development of anticancer agents from natural products[J]. Stem Cells, 1994, 12(1):30-43.
    Sun Miaokun, Alkon D L. Bryostatin-1:pharmacology and therapeutic potential as a CNS drug[J]. CNS Drug Reviews, 2006, 12(1):1-8.
    Sun Miaokun, Alkon D L. Dual effects of bryostatin-1 on spatial memory and depression[J]. European Journal of Pharmacology, 2005, 512(1):43-51.
    林厚文, 易杨华, 李文林, 等. 中国南海总合草苔虫中新的抗癌活性成分Bryostatin19[J]. 中国海洋药物, 1998, 17(1):1-3. Lin Houwen, Yi Yanghua, Li Wenlin, et al. Bryostatin 19:a new antineoplastic component from Bugula neritina in the South China Sea[J]. Chinese Journal of Marine Drugs, 1998, 17(1):1-3.
    Pettit G R, Kamano Y, Herald C L, et al. Isolation and structure of bryostatins 5-7[J]. Canadian Journal of Chemistry, 1985, 63(6):1204-1208.
    曹艳, 章群, 宫亚运, 等. 基于线粒体COⅠ序列的中国沿海蓝点马鲛遗传多样性[J]. 海洋渔业, 2015, 37(6):485-493. Cao Yan, Zhang Qun, Gong Yayun, et al. Genetic variation of Scomberomorus niphonius in the coastal waters of China based on mt DNA COⅠ sequences[J]. Marine Fisheries, 2015, 37(6):485-493.
    刘若愚, 孙忠民, 姚建亭, 等. 中国近海重要生态建群红藻真江蓠的群体遗传多样性[J]. 生物多样性, 2016, 24(7):781-790. Liu Ruoyu, Sun Zhongmin, Yao Jianting, et al. Genetic diversity of the habitat-forming red alga Gracilaria vermiculophylla along Chinese coasts[J]. Biodiversity Science, 2016, 24(7):781-790.
    Guo Xiang, Zhao Dan, Jung D, et al. Phylogeography of the rock shell Thais clavigera(Mollusca):evidence for long-distance dispersal in the northwestern Pacific[J]. PLoS One, 2015, 10(7):e0129715.
    Wang Jie, Tsang L M, Dong Yunwei. Causations of phylogeographic barrier of some rocky shore species along the Chinese coastline[J]. BMC Evolutionary Biology, 2015, 15:114.
    Li Bin, Tian Ling, Zhang Jingying, et al. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max[J]. BMC Genomics, 2014, 15:1096.
    Wang Wenhao, Zhang Tao, Zhang Genxi, et al. Genome-wide association study of antibody level response to NDV and IBV in Jinghai yellow chicken based on SLAF-seq technology[J]. Journal of Applied Genetics, 2015, 56(3):365-373.
    陈士强, 秦树文, 黄泽峰, 等. 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记[J]. 作物学报, 2013, 39(4):727-734. Chen Shiqiang, Qin Shuwen, Huang Zefeng, et al. Development of specific molecular markers for Thinopyrum elongatum chromosome using SLAF-seq technique[J]. Acta Agronomica Sinica, 2013, 39(4):727-734.
    苏文瑾, 赵宁, 雷剑, 等. 基于SLAF-seq技术的甘薯SNP位点开发[J]. 中国农业科学, 2016, 49(1):27-34. Su Wenjin, Zhao Ning, Lei Jian, et al. SNP sites developed by specific length amplification fragment sequencing (SLAF-seq) in Sweetpotato[J]. Scientia Agricultura Sinica, 2016, 49(1):27-34.
    孙名安, 吴志刚, 申欣, 等. 颈链血苔虫线粒体基因组的测定及其系统发育学意义[J]. 渔业科学进展, 2010, 31(1):89-94. Sun Ming'an, Wu Zhigang, Shen Xin, et al. The complete mitochondrial genome of Watersipora subtorquata and its phylogenetic significance[J]. Progress in Fishery Sciences, 2010, 31(1):89-94.
    Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.
    Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739.
    Excoffier L, Lischer H E L. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3):564-567.
    Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4):406-425.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Molecular Ecology, 2005, 14(8):2611-2620.
    Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9):1655-1664.
    de Hoon M J L, Imoto S, Nolan J, et al. Open source clustering software[J]. Bioinformatics, 2004, 20(9):1453-1454.
    Wright S. The genetical structure of populations[J]. Annals of Eugenics, 1949, 15(1):323-354.
    牛素芳, 苏永全, 王军, 等. 福建近海蓝圆鲹群体遗传结构分析[J]. 厦门大学学报:自然科学版, 2012, 51(4):759-766. Niu Sufang, Su Yongquan, Wang Jun, et al. Population genetic structure analysis of Decapterus maruadsi from Fujian coastal waters[J]. Journal of Xiamen University:Natural Science, 2012, 51(4):759-766.
    Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5):415-426.
    Mackie J A, Keough M J, Christidis L. Invasion patterns inferred from cytochrome oxidase Ⅰ sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata[J]. Marine Biology, 2006, 149(2):285-295.
    张丽艳. 台湾海峡三种中上层鱼类遗传多样性的AFLP分析[D]. 厦门:厦门大学, 2011. Zhang Liyan. Genetic diversity of three pelagic fishes in the Taiwan Strait, inferred by AFLP fingerprinting[D]. Xiamen:Xiamen University, 2011.
    Dahms H U, Dobretsov S, Qian Peiyuan. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(1):191-209.
    Wendt D E. Energetics of larval swimming and metamorphosis in four species of Bugula(Bryozoa)[J]. The Biological Bulletin, 2000, 198(3):346-356.
    Keough M J. Dispersal of the bryozoan Bugula neritina and effects of adults on newly metamorphosed juveniles[J]. Marine Ecology Progress Series, 1989, 57:163-171.
    Wendt D E. Effect of larval swimming duration on success of metamorphosis and size of the ancestrular lophophore in Bugula neritina(Bryozoa)[J]. The Biological Bulletin, 1996, 191(2):224-233.
    黄宗国, 蔡如星. 海洋污损生物及其防除[M]. 北京:海洋出版社, 1984:1-352. Huang Zongguo, Cai Ruxing. Marine Fouling and Its prevention[M]. Beijing:China Ocean Press, 1984:1-352.
    Guo Baocheng, de Faveri J, Sotelo G, et al. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks[J]. BMC Biology, 2015, 13:19.
    Wei Qingzhen, Wang Yunzhu, Qin Xiaodong, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing[J]. BMC Genomics, 2014, 15:1158.
    Sun Xiaowen, Liu Dongyuan, Zhang Xiaofeng, et al. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3):e58700.
    Cai Changfu, Cheng Fangyun, Wu Jing, et al. The first high-density genetic map construction in tree peony (Paeonia Sect. Moutan) using genotyping by specific-locus amplified fragment sequencing[J]. PLoS One, 2015, 10(5):e0128584.
    Ma Jianqiang, Huang Long, Ma Chunlei, et al. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq)[J]. PLoS One, 2015, 10(6):e0128798.
    Zhu Yufeng, Yin Yanfei, Yang Keqiang, et al. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.)[J]. BMC Genomics, 2015, 16:614.
    Zheng Wenjing, Li Zhiqiang, Zhao Jiaming, et al. Study of the long-distance migration of small brown planthoppers Laodelphax striatellus in China using next-generation sequencing[J]. Pest Management Science, 2016, 72(2):298-305.
  • 加载中
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  12
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-28
  • 修回日期:  2017-06-15

目录

    /

    返回文章
    返回