留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GOCI影像的长江口及其邻近海域CDOM遥感反演及其日内变化研究

孙璐 蒋锦刚 朱渭宁

孙璐, 蒋锦刚, 朱渭宁. 基于GOCI影像的长江口及其邻近海域CDOM遥感反演及其日内变化研究[J]. 海洋学报, 2017, 39(9): 133-145. doi: 10.3969/j.issn.0253-4193.2017.09.013
引用本文: 孙璐, 蒋锦刚, 朱渭宁. 基于GOCI影像的长江口及其邻近海域CDOM遥感反演及其日内变化研究[J]. 海洋学报, 2017, 39(9): 133-145. doi: 10.3969/j.issn.0253-4193.2017.09.013
Sun Lu, Jiang Jin'gang, Zhu Weining. Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang Estuary and adjacent waters[J]. Haiyang Xuebao, 2017, 39(9): 133-145. doi: 10.3969/j.issn.0253-4193.2017.09.013
Citation: Sun Lu, Jiang Jin'gang, Zhu Weining. Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang Estuary and adjacent waters[J]. Haiyang Xuebao, 2017, 39(9): 133-145. doi: 10.3969/j.issn.0253-4193.2017.09.013

基于GOCI影像的长江口及其邻近海域CDOM遥感反演及其日内变化研究

doi: 10.3969/j.issn.0253-4193.2017.09.013
基金项目: 国家自然科学基金面上项目(41471346);国家自然科学青年基金项目(41401404);海洋公益性行业科研专项经费项目(201005030-06)。

Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang Estuary and adjacent waters

  • 摘要: 采用静止轨道海洋水色卫星(GOCI)数据对长江口及其邻近海域有色溶解有机物(CDOM)反演。以QAA-CDOM算法为基础,根据实测数据,利用BP神经网络模型来拟合QAA-CDOM算法中需要针对长江口水体进行优化的悬浮颗粒后向散射系数bbp与吸收系数ap的关系,从而准确估算CDOM的浓度。结果表明,反演结果准确度较高,平均相对误差为0.35。基于GOCI日内连续成像的优势,选取2014年3月15日8景GOCI影像,利用优化后的QAA-CDOM-BP算法,对长江口及其邻近海域CDOM的日内变化进行反演和分析,得到的变化规律如下:长江口及其邻近海域的CDOM日变化主要受潮流、长江径流等共同影响。长江口内CDOM浓度在涨潮期高于退潮期,由于受长江冲淡水的作用,CDOM从口外往外海区呈现逐渐递减趋势。
  • Rochelle-Newall E J, Fisher T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay[J]. Marine Chemistry, 2002, 77(1):23-41.
    Ferrari G M. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions)[J]. Marine Chemistry, 2000, 70(4):339-357.
    Ferrari G M, Dowell M D, Grossi S, et al. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region[J]. Marine Chemistry, 1996, 55(3):299-316.
    Mannino A, Russ M E, Hooker S B. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight[J]. Journal of Geophysical Research Atmospheres, 2008, 113(C7):827-830.
    Vodacek A, Blough N V, Degrandpre M D, et al. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight:Terrestrial inputs and photooxidation[J]. Limnology & Oceanography, 1997, 42(4):674-686.
    Castillo C E D, Miller R L. On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume[J]. Remote Sensing of Environment, 2008, 112(3):836-844.
    Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4):429-440.
    雷惠, 潘德炉, 陶邦一, 等. 东海典型水体的黄色物质光谱吸收及分布特征[J]. 海洋学报, 2009, 31(2):57-62. Lei Hui, Pan Delu, Tao Bangyi, et al. The spectral absorption and distribution characteristics of CDOM in the typical waters of the East China Sea[J]. Haiyang Xuebao, 2009, 31(2):57-62.
    沈焕庭. 长江河口最大浑浊带[M]. 北京:海洋出版社, 2001. Shen Huanting. Turbidity Maximum Zone of Yangtze Estuary[M]. Beijing:China Ocean Press, 2001.
    沈焕庭, 贺松林. 中国河口最大浑浊带刍议[J]. 泥沙研究, 2001(1):23-29. Shen Huanting, He Songlin. On the turbidity maximum in the Chinese estuaries[J]. Journal of Sediment Research, 2001(1):23-29.
    Goni M A, Cathey M W, Yong H K, et al. Fluxes and sources of suspended organic matter in an estuarine turbidity maximum region during low discharge conditions[J]. Estuarine Coastal & Shelf Science, 2005, 63(4):683-700.
    金惠淑, 鱼京善, 孙文超, 等. 基于GOCI遥感数据的湖泊富营养化监测研究[J]. 北京师范大学学报(自然科学版), 2013, 49(2/3):271-274. Jin Huishu, Yu Jingshan, Sun Wenchao, et al. Monitoring lake eutrophication by GOCI remote sensing[J]. Journal of Beijing Normal University (Natural Science Edition), 2013, 49(2/3):271-274.
    江彬彬, 张霄宇, 杜泳, 等. 基于GOCI的近岸高浓度悬浮泥沙遥感反演——以杭州湾及邻近海域为例[J]. 浙江大学学报:理学版, 2015, 42(2):220-227. Jiang Bingbing, Zhang Xiaoyu, Du Yong, et al. Retrieving high concentration of suspended sediments based on GOCI:An example of coastal water around Hangzhou Bay,China[J]. Journal of Zhejiang University:Science Edition, 2015, 42(2):220-227.
    郭宇龙, 李云梅, 李渊, 等. 一种基于GOCI数据的叶绿素a浓度三波段估算模型[J]. 环境科学, 2015, 36(9):3175-3185. Guo Yulong, Li Yunmei, Li Yuan, et al. A three band chlorophyll a concentration estimation model based on GOCI imagery[J]. Environmental Science, 2015, 36(9):3175-3185.
    Huang C, Shi K, Yang H, et al. Satellite observation of hourly dynamic characteristics of algae with Geostationary Ocean Color Imager (GOCI) data in Lake Taihu[J]. Remote Sensing of Environment, 2015, 159:278-287.
    Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12):2369-2378.
    Harvey E T, Kratzer S, Andersson A. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea[J]. Ambio A Journal of the Human Environment, 2015, 44(S):S392-S401.
    Carder K L, Chen F R, Lee Z, et al. MODIS ocean science team algorithm theoretical basis document[J]. ATBD, 2003, 19(Version 7):7-18.
    吴稳. 长江口水文环境信息与水下地形三维可视化应用研究[D]. 上海:华东师范大学, 2010. Wu Wen. A study on three-dimensional visualization of hydrological and topographic data of Changjiang Estuary[D]. Shanghai:East China Normal University, 2010.
    张述伟, 王江涛, 李宁, 等. 2010年春季长江口邻近海区水体中溶解有机碳、氮的分布特征及其影响因素[J]. 海洋环境科学, 2013, 32(1):33-38. Zhang Shuwei, Wang Jiangtao, Li Ning, et al. Dissolved organic carbon and nitrogen in Changjiang Estuary and adjacent sea areas in spring[J]. Marine Environmental Science, 2013, 32(1):33-38.
    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44. Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004, 8(1):37-44.
    Hu C, Muller-Karger F E, Zepp R G. Absorbance, absorption coefficient, and apparent quantum yield:A comment on common ambiguity in the use of these optical concepts[J]. Limnology & Oceanography, 2002, 47(4):1261-1267.
    Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains 1[J]. Limnology & Oceanography, 1981, 26(1):43-53.
    Babin M, Stramski D, Ferrari G M, et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research, 2003, 108(C7):4-1-4-20.
    郝艳玲. 黄河口水体生物光学性质逐时变化的静止海洋水色卫星遥感探测研究[D]. 青岛:中国海洋大学, 2012. Hao Yanling. Detection of hourly variability of bio-optical properties in the Yellow River Estuary by geostationary satellite ocean color images[D]. Qingdao:Ocean University of China, 2012.
    Lee Z, Lubac B, Werdell J, et al. An update of the quasi-analytical algorithm (QAA_v5)[R].International Ocean Color Group Software Report, 2009:1-9,
    Zhu W N, Yu Q. Inversion of chromophoric dissolved organic matter from EO-1 hyperion imagery for turbid estuarine and coastal waters[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6):3286-3298.
    Zhu W N, Yu Q, Tian Y Q, et al. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C2):434-441.
    Keiner L E, Yan X H. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery[J]. Remote Sensing of Environment, 1998, 66(2):153-165.
    Moon J E, Park Y J, Ryu J H, et al. Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011[J]. Ocean Science Journal, 2012, 47(3):261-277.
    Siswanto E, Tang J, Yamaguchi H, et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011, 67(5):627-650.
    朱伟健. 长江口及邻近海域有色溶解有机物(CDOM)的光学特性和遥感反演的初步研究[D]. 上海:华东师范大学, 2010. Zhu Weijian. Optical properties and remote sensing retrieval of Colored Dissolved Organic Materials (CDOM) in Yangtze Estuary and adjacent waters[D]. Shanghai:East China Normal University, 2010.
    潘孝辉, 吴敏, 王悦. 黄浦江水环境污染风险的模糊数学综合评价[J]. 四川环境, 2008, 27(6):60-62. Pan Xiaohui, Wu Min, Wang Yue. Fuzzy comprehensive assessment of water pollution conditions of Huangpu River[J]. Sichuan Environment, 2008, 27(6):60-62.
    邢小刚,赵冬至,刘玉刚. 渤海非色素颗粒物和黄色物质的吸收特性研究[J]. 海洋环境科学, 2008, 27(6):595-598. Xing Xiaogang, Zhao Dongzhi, Liu Yugang, et al. Absorption characteristics of de-pigmented particle and yellow substance in Bohai Sea[J]. Marine Environmental Science, 2008, 27(6):595-598.
    范冠南, 毛志华, 陈鹏, 等. 长江口及其邻近海域CDOM光谱吸收特性分析[J]. 海洋学研究, 2013, 31(1):53-58. Fan Guannan, Mao Zhihua, Chen Peng, et al. Optical characteristics of colored dissolved organic matter(CDOM) in Changjiang River Estuary and its adjacent sea areas[J]. Journal of Marine Science, 2013, 31(1):53-58.
    Guo Weidong, Yang Liyang, Zhai Weidong, et al. Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary&mdash:The Changjiang Estuary[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(5):776-793.
    Pan Delu, Liu Qiong, Bai Yan. Progress in remote sensing of DOC:Based on the analysis of conservative behaviors of DOC and CDOM in global large rivers estuaries[J]. Acta Oceanologica Sinica, 2012, 34(4):1-9.
    Huang Y, Salama M S, Krol M S, et al. Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling:A case study of the Yangtze River basin[J]. Water Resources Research, 2015, 51(10):8494-8516.
    Huang Y, Salama M S, Su Z, et al. Effects of roughness length parameterizations on regional-scale land surface modeling of alpine grasslands in the Yangtze River Basin[J]. Journal of Hydrometeorology, 2016, 17(4):1069-1085.
    Yu Xiaolong, Shen Fang, Liu Yangyang. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters:An alternative approach for DOC estimation[J]. Estuarine Coastal & Shelf Science, 2016, 181:302-311.
    金翔龙. 东海海洋地质[M]. 北京:海洋出版社, 1992. Jin Xianglong. Marine Geology of the East China Sea[M]. Beijing:China Ocean Press, 1992.
    李奕洁, 宋贵生, 胡素征, 等. 2014年夏季长江口有色溶解有机物(CDOM)的分布、光学特性及其来源探究[J]. 海洋与湖沼, 2015, 46(3):670-678. Li Yijie, Song Guisheng, Hu Suzheng, et al. Optical characterization and distribution of chromophoric dissolved organic matter (CDOM) in the Changjiang River Estuary in July 2014[J]. Oceanologia et Limnologia Sinica, 2015, 46(3):670-678.
    朱伟健, 沈芳, 洪官林. 长江口及邻近海域有色溶解有机物(CDOM)的光学特性[J]. 环境科学, 2010, 31(10):2292-2298. Zhu Weijian, Shen Fang, Hong Guanlin. Optical characteristics of colored dissolved organic material (CDOM) in Yangtze Estuary[J]. Environmental Science, 2010, 31(10):2292-2298.
    Bodineau L, Thoumelin G, Béghin V, et al. Tidal time-scale changes in the composition of particulate organic matter within the estuarine turbidity maximum zone in the Macrotidal Seine Estuary, France:the use of fatty acid and sterol biomarkers[J]. Estuarine Coastal & Shelf Science, 1998, 47(1):37-49.
  • 加载中
计量
  • 文章访问数:  938
  • HTML全文浏览量:  41
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 修回日期:  2017-03-01

目录

    /

    返回文章
    返回