留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪诱发松散海床渐进式液化的数值分析

栾一晓

栾一晓. 波浪诱发松散海床渐进式液化的数值分析[J]. 海洋学报, 2017, 39(9): 101-109. doi: 10.3969/j.issn.0253-4193.2017.09.010
引用本文: 栾一晓. 波浪诱发松散海床渐进式液化的数值分析[J]. 海洋学报, 2017, 39(9): 101-109. doi: 10.3969/j.issn.0253-4193.2017.09.010
Luan Yixiao. Wave-induced progressive liquefaction in loosely deposited seabed[J]. Haiyang Xuebao, 2017, 39(9): 101-109. doi: 10.3969/j.issn.0253-4193.2017.09.010
Citation: Luan Yixiao. Wave-induced progressive liquefaction in loosely deposited seabed[J]. Haiyang Xuebao, 2017, 39(9): 101-109. doi: 10.3969/j.issn.0253-4193.2017.09.010

波浪诱发松散海床渐进式液化的数值分析

doi: 10.3969/j.issn.0253-4193.2017.09.010

Wave-induced progressive liquefaction in loosely deposited seabed

  • 摘要: 近海区域广泛分布着第四纪新沉积的松散海洋土,波浪荷载作用下松散海床会发生液化进而对近海结构物的稳定性存在巨大威胁。本文采用中国科学院流体-结构-海床相互作用数值计算模型FSSI-CAS 2D,选用Pastor-Zienkiewicz-Mark Ⅲ(PZⅢ)弹塑性本构研究了波浪诱发的松散海床液化问题。分析了波浪荷载引起的松散海床内超孔隙水压力、有效应力以及应力角的时程变化特性,并预测了松散海床的渐进液化过程。计算结果表明,波浪荷载作用下松散海床内残余孔压会累积增长,海床表面最先发生液化,然后逐渐向下发展至液化最大深度。同时指出海床内超孔隙水压力的竖向分布特征和应力角的变化时程均可以作为判断海床液化的间接参数。最后,通过应力状态分析,讨论了海床渐进式液化的发展过程和趋势。
  • Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Part 1:Low frequency range[J]. Acoustical Society of America, 1956, 28(2):168-179.
    Lee T C, Tsai C P, Jeng D S. Ocean wave propagating over a porous seabed of finite thickness[J]. Ocean Engineering, 2002, 29(12):1577-1601.
    Jeng D S. Wave-induced sea floor dynamics[J]. Applied Mechanics Reviews, 2003, 56(4):407-429.
    Seed H B, Martin P O, Lysmer J. Pore-water pressure changes during soil liquefaction[J]. Journal of Geotechnical Engineering ASCE, 1976, 102(4):323-346.
    Seed H B, Rahman M S. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils[J]. Marine Geotechnology, 1978, 3(2):123-150.
    Sassa S, Sekiguchi H, Miyamoto J. Analysis of progressive liquefaction as a moving boundary problem[J]. Géotechnique, 2001, 51(10):847-857.
    Dunn S L, Vun P L, Chan A H C, et al. Numerical modeling of wave-induced liquefaction around pipelines[J]. Journal of Waterway, Port, Coastaland Ocean Engineering, 2006, 132(4):276-288.
    Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modelling of soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3):151-190.
    Zienkiewicz O C, Chang C T, Bettess P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4):385-395.
    Jeng D S, Ou J. 3D models for wave-induced pore pressures near breakwater heads[J]. Acta Mechanica, 2010, 215(1/4):85-104.
    Ou J. Three-dimensional numerical modelling of interaction between soil and pore fluid[D]. Birmingham, UK:Universtity of Birmingham, 2009.
    王良民, 叶剑红, 朱长歧. 近海欠密实砂质海床内波致渐进液化特征研究[J]. 岩土力学, 2015, 36(12):3583-3588. Wang Liangmin, Ye Jianhong, Zhu Changqi. Investigation on the wave-induced progressive liquefaction of offshore loosely deposited sandy seabed[J]. Rock and Soil Mechanics,2015, 36(12):3583-3588.
    Chan A H C. A unified finite element solution to static and dynamic problems of geomechanics[D]. Swansea Wales:University of Wales, 1988.
    Ye J H. Numerical analysis of wave-seabed-breakwater interactions[D]. Dundee, UK:Universtity of Dundee, 2012.
    Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering, 2002, 46(1):25-50.
    Ye J H, Jeng D S, Wang R, et al. Validation of a 2D semi-coupled numerical model for Fluid-Structures-Seabed Interaction[J]. Journal of Fluids and Structures, 2013, 42(4):333-357.
    Zienkiewicz O C, Chan A H C, Pastor M, et al. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. Chichester:John Wiley & Sons Ltd, 1999.
    Miyamoto J, Sassa S, Sekiguchi H. Progressive solidification of a liquefied sand layer during continued wave loading[J]. Géotechnique, 2004, 54(10):617-629.
    Sassa S, Sekiguchi H. Wave-induced liquefaction of beds of sand in a centrifuge[J]. Géotechnique, 1999, 49(5):621-638.
    Hsu J R, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11):785-807.
    Lu H B. The research on pore water pressure response to waves in sandy seabed[D]. Changsha:Changsha University of Science & Technology, 2005.
    Tsai C P, Lee T L. Standing wave induced pore pressure in a porous seabed[J]. Ocean Engineering, 1995, 22(6):505-517.
    Mizutani N, Mostarfa A, Iwata K. Nonliear regular wave, submerged breakwater and seabed dynamic interaction[J]. Coastal Engineering, 1998, 33(2/3):177-202.
    Mostafa A, Mizutani N, Iwata K. Nonlinear wave, composite breakwater, and seabed dynamicinteraction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 1999, 25(2):88-97.
    Ye J H, Jeng D S, Wang R, et al. Numerical simulation of wave-induced dynamic response of poro-elasto-plastic seabed foundation and composite breakwater[J]. Applied Mathematical Modeling, 2015, 39(1):322-347.
    Ye J H, Wang G. Seismic dynamics of offshore breakwater on liquefiable seabed foundation[J]. Soil Dynamics and Earthquake Engineering, 2015, 76:86-99.
    Teh T C, Palmer A C, Damgaard J S. Experimental study of marine pipelines on unstable and liquefied seabed[J]. Coastal Engineering, 2003, 50(1/2):1-17.
    Ye J H, Jeng D S. Response of porous seabed to nature loadings:Waves and currents[J]. Journal of Engineering Mechanics, ASCE, 2012, 138(6):601-613.
    Ye J H. Numerical modelling of consolidation of 2-D porous unsaturated seabed under a composite breakwater[J]. Mechanika, 2012, 18(4):373-379.
    Sassa S, Takayama T, Mizutani M, et al. Field observations of the build-up and dissipation of residual porewater pressures in seabed sands under the passage of stormwaves[J]. Journal of Coastal Research, 2006, 39(12):410-414.
    Ishihara K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3):351-451.
    Wu J, Kammaerer A M, Riemer M F, et al. Laboratory study of liquefaction triggering criteria[C]//Proceedings of 13th World Conference on Earthquake Engineering. Vancouver, British Columbia, Canada. 2004.
  • 加载中
计量
  • 文章访问数:  745
  • HTML全文浏览量:  18
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 修回日期:  2017-08-05

目录

    /

    返回文章
    返回