留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部陆坡气泡羽状流的发现:多波束水体数据

刘斌 刘胜旋

刘斌, 刘胜旋. 南海北部陆坡气泡羽状流的发现:多波束水体数据[J]. 海洋学报, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008
引用本文: 刘斌, 刘胜旋. 南海北部陆坡气泡羽状流的发现:多波束水体数据[J]. 海洋学报, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008
Liu Bin, Liu Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data[J]. Haiyang Xuebao, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008
Citation: Liu Bin, Liu Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data[J]. Haiyang Xuebao, 2017, 39(9): 83-89. doi: 10.3969/j.issn.0253-4193.2017.09.008

南海北部陆坡气泡羽状流的发现:多波束水体数据

doi: 10.3969/j.issn.0253-4193.2017.09.008

Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data

  • 摘要: 利用2016年在南海西北部陆坡琼东南海域采集的多波束水体数据,发现了海底气体渗漏至海水中形成的羽状流。在多波束数据上, 羽状流成火焰状,直径大约为30~50 m,从1 380多米的海底延伸至大约650 m的深度,高度超过700 m。在经过羽状流的浅剖剖面上,存在显示浅层气存在的声学空白区域,并识别出断裂和裂隙区域,但在水体中并无明显的异常。这可能是由于浅剖数据的分辨率不够未能捕捉到水体异常,或者气体渗漏具有间歇性。该海域存在明显的似海底反射显示,气体渗漏可能与水合物系统之间存在复杂的相互作用。由于缺乏经过羽状流的多道地震数据,难以对羽状流的形成机制进行进一步的推测。南海北部陆坡羽状流的发现对于理解被动大陆边缘的甲烷渗漏机制、水合物的形成与分解具有重要的意义。
  • Judd A G. The global importance and context of methane escape from the Seabed[J]. Geo-Marine Letters, 2003, 23(3/4):147-154.
    Carpenter G. Coincident sediment slump/clathrate complexs on the U.S. Atlantic continental slope[J]. Geo-Marine Letters, 1981, 1(1):29-32.
    Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2):173-187.
    Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49):596-601.
    Judd A G, Hovland M. Seabed Fluid Flow[M]. Cambridge:Cambridge University Press, 2003:475.
    Bangs N L B, Hornbach M J, Berndt C. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying[J]. Earth & Planetary Science Letters, 2011, 310(1):105-112.
    Westbrook G K, Thatcher K E, Rohling E J,et al. Escape of methane gas from the seabed along the West Spisbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15):139-156.
    Thatcher K E, Westbrook G K, Sarkar S, et al. Methane release from warming-induced hydrate dissociation in the west Svalbard continental margin:Timing, rates, and geological control[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(1):22-38.
    Berndt C, Feseker T, Treude T, et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science, 2014, 343(6168):284-287.
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3):354-365.
    Greinert J, Artemov Y, Egorov V, et al. 1300 m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:Hydroacoustic characteristics and temporal variability[J]. Earth and Planetary Science Letters, 2006, 244(1):1-15.
    Heeschean K U, Tréhu A M, Collier R W, et al. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging[J]. Geophysical Research Letters, 2003, 30(12):1643.
    栾锡武, 刘鸿, 岳保静, 等. 海底冷泉在旁扫声呐图像上的识别[J]. 现代地质, 2010, 24(3):474-480. Luan Xiwu, Liu Hong, Yue Baojing, et al. Characteristics of cold seepage on side-scan sonar sonogram[J]. Geoscience, 2010, 24(3):474-480.
    Matsumoto R. Methane plumes over a marine gas hydrate system in the eastern margin of Japan sea:A possible mechanism for transportation of subsurface methane to shallow waters[C]//5th International Conference on Gas hydrates 2005(ICGH) 2005. New York:Curran Associates Inc.,2009:1051.
    Merewether R, Olsso M S, Lonsdale P, et al. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California[J]. Journal of Geophysical Research, 1985, 90(B4):3075-3085.
    Brothers L L, Dover C L, German C R, et al. Evidence for extensive methane venting on the southeastern U.S. Atlantic margin[J]. Geology, 2013, 41(7):807-810.
    Römer M,Torres M,Kasten S, et al. First evidence of widespread active methane seepage in the southern Ocean, off the sub-Antarctic island of south Geogria[J]. Earth and Planetary Science Letters, 2014, 403:166-177.
    Li Lun, Lei Xinghua, Zhang Xin. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea[J]. Marine and Petroleum Geology, 2013(39):92-101.
    Yang S, Zhang G, Zhang M, et al. A complex gas hydrate system in the Dongsha area, South China Sea:result from drilling expedition GMGS2[C]//Proceedings of the 8th International Conference on Gas hydrate. Beijing, China, 2014.
    Zhang Guangxue, Yang Shengxiong, Zhang Ming, et al. GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea[J]. Fire in the Ice, 2014, 14(1):1-5.
    拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7):2208-2222. Bai Yang, Song Haibin, Guan Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multi-beam data[J]. Chinese Journal of Geophysics, 2014, 57(7):2208-2222.
    黄永样, Suess E, 吴能友. 南海北部陆坡甲烷和天然气水合物地质:中德合作SO 177航次成果专报[M]. 北京:地质出版社, 2008. Huang Yongyang, Suess E, Wu Nengyou. Methan and gas hydrate geology of the Northern South China Sea, Sino-German Cooperative SO-177 Cruise Report[M]. Beijing:Geological Publishing House, 2008.
    陈多福,李绪宣,夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3):483-489. Chen Duofu, Li Xuxuan, Xia Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004, 47(3):483-489.
    陈多福, 黄永样, 冯东, 等.南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义[J]. 矿物岩石地球化学通报, 2005, 24(3):185-189. Chen Duofu, Huang Yongyang, Feng Dong, et al. Seep carbonate and preserved bacteria fossils in the northern of the South China Sea and their geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):185-189.
    Borowski W S, Paull C K, Ussler W. Global and local variation of interstitial sulfate gradients in deep-water, continental margin sediments:sensitivity to underlying methane and gas hydrate[J]. Marine Geology, 1999, 159(1-4):131-154.
    Gorman A R, Gorman W S, Holbrook M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province[J]. Geology, 2002, 30(4):327-330.
    Ruppel C G, Dicken D G, Castellini D G, et al. Heat and salt inhibition of gas hydrate in the northern Gulf of Mexico[J]. Geophysical Research Letter, 2005, 32(4):L04625.
    Leifer I, MacDonald I. Dynamics of the gas flux from shallow gas hydrate deposits:interaction between oily hydrate bubbles and the oceanic environment[J]. Earth Planetary Science Letter, 2003, 210(3):411-424.
    Rehder G, Brewer P W, Peltzer E T, et al. Enhanced lifetime of methane bubble streams within the deep ocean[J]. Geophysical Research Letter, 2002, 29(15):21-24.
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate coated methane bubbles[J]. Earth & Planetary Science Letters, 2006, 243(3):354-365.
    Jin Chunshuang, Wang Jiyang. A preliminary study of the gas hydrate stability zone in the South China Sea[J]. Acta Geologica Sinica, 2002, 76(4):423-428.
  • 加载中
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  38
  • PDF下载量:  734
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-02-08

目录

    /

    返回文章
    返回