留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群优化算法的PSO-BP海底声学底质分类方法

陈佳兵 吴自银 赵荻能 周洁琼 李守军 尚继宏

陈佳兵, 吴自银, 赵荻能, 周洁琼, 李守军, 尚继宏. 基于粒子群优化算法的PSO-BP海底声学底质分类方法[J]. 海洋学报, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005
引用本文: 陈佳兵, 吴自银, 赵荻能, 周洁琼, 李守军, 尚继宏. 基于粒子群优化算法的PSO-BP海底声学底质分类方法[J]. 海洋学报, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005
Chen Jiabing, Wu Ziyin, Zhao Dineng, Zhou Jieqiong, Li Shoujun, Shang Jihong. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005
Citation: Chen Jiabing, Wu Ziyin, Zhao Dineng, Zhou Jieqiong, Li Shoujun, Shang Jihong. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51-57. doi: 10.3969/j.issn.0253-4193.2017.09.005

基于粒子群优化算法的PSO-BP海底声学底质分类方法

doi: 10.3969/j.issn.0253-4193.2017.09.005
基金项目: 国家自然科学基金(41476049);科技基础性工作专项(2013FY112900);海洋公益项目(201105001)。

Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms

  • 摘要: 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。
  • Leblanc L R, Mayer L, Rufino M, et al. Marine sediment classification using the chirp sonar[J]. Journal of the Acoustical Society of America, 1992, 91(1):107-115.
    Alexandrou D, Pantzartzis D. Seafloor classification with neural networks[J]. Oceans, 1990, 99(3):18-23.
    Chakraborty B, Kaustubha R, Hegde A, et al. Acoustic seafloor sediment classification using self-organizing feature maps[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 39(12):2722-2725.
    Chakraborty B, Kodagali V, Baracho J. Sea-floor classification using multibeam echo-sounding angular backscatter data:a real-time approach employing hybrid neural network architecture[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):121-128.
    Marsh I, Brown C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10):1269-1276.
    阳凡林, 刘经南, 赵建虎,等. 基于遗传算法的BP网络实现海底底质分类[J]. 测绘科学, 2006, 31(2):111-114. Yang Fanlin, Liu Jingnan, Zhao Jianhu, et al. Seabed classification using BP neural network basd on GA[J]. Science of Surveying and Mapping, 2006, 31(2):111-114.
    唐秋华, 刘保华, 陈永奇, 等. 基于改进BP神经网络的海底底质分类[J]. 海洋测绘, 2009, 29(5):40-43. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Seabed classification with improved BP neural network[J]. Hydrographic Surveying and Charting, 2009, 29(5):40-43.
    唐秋华, 刘保华, 陈永奇,等. 结合遗传算法的LVQ神经网络在声学底质分类中的应用[J]. 地球物理学报, 2007, 50(1):313-319. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Application of LVQ neural network combined with the genetic algorithm in acoustic seafloor classification[J]. Chinese Journal of Geophysics, 2007, 50(1):313-319.
    唐秋华, 刘保华, 陈永奇,等. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3):380-384. Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Acoustic seafloor classification using selforganizing map neural network[J]. Technical Acoustics, 2007, 26(3):380-384.
    Zhou Xinghua, Chen Yongqi. Seafloor classification of multibeam sonar data using neural network approach[J]. Marine Geodesy, 2005, 28(2):201-206.
    郭军, 马金凤. 基于K-L变换的自组织竞争神经网络在海底底质分类中的应用[J]. 测绘工程, 2013, 22(1):51-54. Guo Jun, Ma Jinfeng. Self-organization competition neural network based on K-L transform in seafloor classification[J]. Engineering of Surveying and Mapping, 2013, 22(1):51-54
    郭军, 马金凤. 基于粒子群优化算法的SVM神经网络在海底底质分类中的应用[J]. 测绘与空间地理信息, 2012, 35(12):66-68. Guo Jun, Ma Jinfeng. Support vector machine neural network based on particle swarm optimization in seafloor classification[J]. Geomatics &Spatial Information Technology, 2012, 35(12):66-68.
    郭军. 基于主成分分析的自组织竞争神经网络实现海底底质分类[M]//中国地球物理(2012). 北京:中国科学技术大学出版社, 2012. Guo Jun. Self-organization competition neural network based on principle component analysis in seafloor classification[M]//The Chinese Geophysics(2012). Beijing:University of Science and Technology of China Press, 2012.
    贺清碧. BP神经网络及应用研究[D]. 重庆:重庆交通大学, 2004. He Qingbi. BP neural network and application research[D]. Chongqing:Chongqing Jiaotong University, 2004.
    Kennedy J, Eberhart R C. Particle swarm optlmization[C]//Proceeding of IEEE International Conference on Neural Networks,1995,(4):1942-1948.
    范娜, 云庆夏. 粒子群优化算法及其应用[J]. 信息技术, 2006, 30(1):53-56. Fan Na, Yun Qingxia. Particle swarm optimization algorithms and its applications[J]. Information Technology, 2006, 30(1):53-56.
    李松, 刘力军, 翟曼. 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012, 32(9):2045-2049. Li Song, Liu Lijun, Zhai Man. Prediction for short-term traffic flow based on modified PSO optimized BP neural network[J]. System Engineering Theory &Practice, 2012, 32(9):2045-2049.
    何怡刚, 祝文姬, 周炎涛,等. 基于粒子群算法的模拟电路故障诊断方法[J]. 电工技术学报, 2010(6):163-171. He Yigang, Zhu Wenji, Zhou Yantao, et al. An analog circuit diagnosis method based on particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2010(6):163-171.
    孙亚. 基于粒子群BP神经网络人脸识别算法[J]. 计算机仿真, 2008, 25(8):201-204. Sun Ya. Human face recognition based on PSO and BP neural network[J]. Computer Simulation, 2008, 25(8):201-204.
    Kloser R J. Seabed backscatter, data collection, and quality overview[J]. Ices Cooperative Research Report, 2007, 286:45-60.
    唐秋华, 周兴华, 丁继胜,等. 多波束反向散射强度数据处理研究[J]. 海洋学报, 2006, 28(2):51-55. Tang Qiuhua, Zhou Xinhua, Ding Jisheng, et al. Study on processing of multibeam backscatter data[J]. Haiyang Xuebao, 2006, 28(2):51-55.
    赵永祯, 唐劲松, 钟何平. 基于声呐图像纹理特征的海底底质分类方法研究[J]. 海洋测绘, 2015, 35(3):60-63. Zhao Yongzhen, Tang Jinsong, Zhong Heping. Seabed sediment classification based on texture feature of sonar imagery[J]. Hydrographic Surveying and Charting, 2015, 35(3):60-63.
    王惠明, 史萍. 图像纹理特征的提取方法[J]. 中国传媒大学学报:自然科学版, 2006, 13(1):49-52. Wang Huiming, Shi Ping. Methods to extract images texture features[J]. Journal of Communication University of China Science and Techology, 2006, 13(1):49-52.
    Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Systems Man & Cybernetics IEEE Transactions on, 1973, SMC-3(6):610-621.
    张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉:Visual C++与Matlab实现[M]. 北京:人民邮电出版社, 2010. Zhang Zheng, Wang Yanping, Xue Guixiang. Digital Image Processing and Machine Vision:Visual C ++ and Matlab Realization[M]. Beijing:Posts & Telecom Press, 2010.
    于成龙. 基于特征提取的特征选择研究[D]. 南京:南京邮电大学, 2011. Yu Chenglong. Research on feature selection based on feature extraction[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2011.
  • 加载中
计量
  • 文章访问数:  935
  • HTML全文浏览量:  36
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-15

目录

    /

    返回文章
    返回