留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口表层水体颗粒物中古菌四醚类脂物的分布特征

郭威 叶丰 贾国东

郭威, 叶丰, 贾国东. 珠江口表层水体颗粒物中古菌四醚类脂物的分布特征[J]. 海洋学报, 2017, 39(8): 1-15. doi: 10.3969/j.issn.0253-4193.2017.08.001
引用本文: 郭威, 叶丰, 贾国东. 珠江口表层水体颗粒物中古菌四醚类脂物的分布特征[J]. 海洋学报, 2017, 39(8): 1-15. doi: 10.3969/j.issn.0253-4193.2017.08.001
Guo Wei, Ye Feng, Jia Guodong. Distribution of archaeal lipids in surface water suspened particulate matter of Pearl River Estuary[J]. Haiyang Xuebao, 2017, 39(8): 1-15. doi: 10.3969/j.issn.0253-4193.2017.08.001
Citation: Guo Wei, Ye Feng, Jia Guodong. Distribution of archaeal lipids in surface water suspened particulate matter of Pearl River Estuary[J]. Haiyang Xuebao, 2017, 39(8): 1-15. doi: 10.3969/j.issn.0253-4193.2017.08.001

珠江口表层水体颗粒物中古菌四醚类脂物的分布特征

doi: 10.3969/j.issn.0253-4193.2017.08.001
基金项目: 国家自然科学基金(41276072,41306102)。

Distribution of archaeal lipids in surface water suspened particulate matter of Pearl River Estuary

  • 摘要: 类异戊二烯甘油二烷基甘油四醚类化合物(isoGDGTs)是古菌微生物的特征脂类标志物,由这组化合物构造出的TEX86温标在海水古温度重建中得到了广泛应用。本文调查了珠江口及近岸海域(水深小于30 m)4个季节水体悬浮颗粒物(SPM)的isoGDGTs分布情况。结果显示:虎门上游河流水体中的isoGDGTs主要来自原地生产的甲烷古菌输入,进入河口水体后,主要来自原地奇古菌和广古菌的输入。陆源古菌的输入在5月份和8月份,对河流水体产生一定的影响,但对河口水体的影响相对较小。珠江口水体isoGDGTs中的GDGT-2与GDGT-3比值(GDGT-[2]/[3])和GDGT-Cren'的丰度百分比(Cren'%)分别小于4和4%,与南海深水沉积物明显不同,表明珠江口与南海深水沉积物中isoGDGTs的古菌来源存在差异,这也可能是引起珠江口水体TEX86温度(基于全球标定公式)偏离水体实际温度的原因。珠江口表层水体isoGDGTs中的GDGT-2和GDGT-3的丰度百分比与南海表层水体存在差异,这可能与GroupⅠ奇古菌和GroupⅡ广古菌相对比例空间变化有关。珠江口表层水体isoGDGTs的TEX86温度在2月份明显高于原地表层水体温,而其他月份都低于原地表层水体温度,可能与Group Ⅰ奇古菌和Group Ⅱ广古菌相对比例的季节变化有关。几个月份中11月份isoGDGTs绝对含量最高,8月份较低,表明11月份和8月份分别是原地古菌生产量较大和较小时期。统计分析的结果显示,水体铵根离子含量、水体温度,以及溶解氧水平可能是控制珠江口水体isoGDGTs分布的主要环境因素。
  • Damsté J S S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of Planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68(6):2997-3002.
    Damsté J S S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73(14):4232-4249.
    Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809.
    Schouten S, Hopmans E C, Baas M, et al. Intact membrane lipids of "Candidatus Nitrosopumilus maritimus," a cultivated representative of the cosmopolitan Mesophilic Group I crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74(8):2433-2440.
    Schouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids:Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14421-14426.
    Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures[J]. Earth and Planetary Science Letters, 2002, 204(1/2):265-274.
    Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4):1154-1173.
    Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4639-4654.
    Jia Guodong, Zhang Jie, Chen Jianfang, et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea[J]. Organic Geochemistry, 2012, 50:68-77.
    Kim J H, Schouten S, Rodrigo-Gámiz M, et al. Influence of deep-water derived isoprenoid tetraether lipids on the TEX86H paleothermometer in the Mediterranean Sea[J]. Geochimica et Cosmochimica Acta, 2015, 150:125-141.
    Leider A, Hinrichs K-U, Mollenhauer G, et al. Core-top calibration of the lipid-based U37K' and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto)[J]. Earth and Planetary Science Letters, 2010, 300(1/2):112-124.
    Zhang Jie, Bai Yang, Xu Shendong, et al. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea[J]. Organic Geochemistry, 2013, 58:115-120.
    Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils:implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37(12):1680-1693.
    Zhu Chun, Weijers J W H, Wagner T, et al. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin[J]. Organic Geochemistry, 2011, 42(4):376-386.
    Lincoln S A, Wai B, Eppley J M, et al. Planktonic euryarchaeota are a significant source of archaeal tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27):9858-9863.
    Zhu Chun, Wakeham S G, Elling F J, et al. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea[J]. Environmental Microbiology, 2016, 18:4324-4336.
    Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review[J]. Organic Geochemistry, 2013, 54:19-61.
    Wei Yuli, Wang Jinxiang, Liu Jie, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for paleoclimate studies[J]. Applied and Environmental Microbiology, 2011, 77(21):7479-7489.
    Ge Huangmin, Zhang Chuanlun, Dang Hongyue, et al. Distribution of tetraether lipids in surface sediments of the northern South China Sea:implications for TEX86 proxies[J]. Geoscience Frontiers, 2013, 4(2):223-229.
    Zhou Haoda, Hu Jianfang, Spiro B, et al. Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China:indicators of sea surface temperature and effects of their sources[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395:114-121.
    Wang Jinxiang, Wei Yuli, Wang Peng, et al. Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea:impact of changing archaeal community composition[J]. Chemical Geology, 2015, 402:18-29.
    Zhang Shurong, Lu Xixi, Higgitt D L, et al. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China[J]. Global and Planetary Change, 2008, 60(3/4):365-380.
    Hu Jianfang, Peng Ping'an, Chivas A R. Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea[J]. Applied Geochemistry, 2009, 24(9):1666-1676.
    Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(7):585-589.
    Schouten S, Forster A, Panato F E, et al. Towards the calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds[J]. Organic Geochemistry, 2007, 38(9):1537-1546.
    Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2):107-116.
    Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect[J]. Journal of Paleolimnology, 2009, 41(3):523-540.
    Zhang Yige, Zhang Chuanlun, Liu Xiaolei, et al. Methane Index:a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates[J]. Earth and Planetary Science Letters, 2011, 307(3/4):525-534.
    Weijers J W H, Panoto E, Van Bleijswijk J, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6):402-414.
    Guo Wei, Ye Feng, Xu Shendong, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China[J]. Estuarine, Coastal and Shelf Science, 2015, 167:540-548.
    Huang X P, Huang L M, Yue W Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China[J]. Marine Pollution Bulletin, 2003, 47(1/6):30-36.
    Chen C T A, Wang Shulun, Lu Xixi, et al. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond[J]. Quaternary International, 2008, 186(1):79-90.
    He Biyan, Dai Minhan, Zhai Weidong, et al. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms:a synthesis based on multiple year observations during 2000-2008[J]. Marine Chemistry, 2014, 167:13-24.
    Hernández-Sánchez M T, Woodward E M S, Taylor K W R, et al. Variations in GDGT distributions through the water column in the South East Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2014, 132:337-348.
    Taylor K W R, Huber M, Hollis C J, et al. Re-evaluating modern and palaeogene GDGT distributions:implications for SST reconstructions[J]. Global and Planetary Change, 2013, 108:158-174.
    Kim J H, Villanueva L, Zell C, et al. Biological source and provenance of deep-water derived isoprenoid tetraether lipids along the Portuguese continental margin[J]. Geochimica et Cosmochimica Acta, 2016, 172:177-204.
    Turich C, Freeman K H, Bruns M A, et al. Lipids of marine Archaea:Patterns and provenance in the water-column and sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(13):3272-3291.
    Xia Xiaomin, Guo Wang, Liu Hongbin. Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2015, 117:97-107.
    Wuchter C, Schouten S, Wakeham St G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:implications for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20(3):PA3013.
    Alonso-Sáez L, Sánchez O, Gasol J M, et al. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes[J]. Environmental Microbiology, 2008, 10(9):2444-2454.
    Wuchter C, Abbas B, Coolen M J L, et al. Archaeal nitrification in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12317-12322.
    Chen Fajin, Jia Guodong. Spatial and seasonal variations in δ13C and δ15N of particulate organic matter in a dam-controlled subtropical river[J]. River Research and Applications, 2008, 25(9):1169-1176.
    Pitcher A, Rychlik N, Hopmans E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I. 1b Crenarchaeote[J]. The ISME Journal, 2010, 4(4):542-552.
    Wu Weichao, Ruan Jiaping, Ding Su, et al. Source and distribution of glycerol dialkyl glycerol tetraethers along lower Yellow River-estuary-coast transect[J]. Marine Chemistry, 2014,158(1):17-26.
  • 加载中
计量
  • 文章访问数:  894
  • HTML全文浏览量:  11
  • PDF下载量:  633
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-09
  • 修回日期:  2017-02-16

目录

    /

    返回文章
    返回