留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络的海洋涡旋移动特征研究——以南海为例

杜云艳 莫洋 王会蒙 易嘉伟

杜云艳, 莫洋, 王会蒙, 易嘉伟. 基于复杂网络的海洋涡旋移动特征研究——以南海为例[J]. 海洋学报, 2017, 39(7): 110-123. doi: 10.3969/j.issn.0253-4193.2017.07.011
引用本文: 杜云艳, 莫洋, 王会蒙, 易嘉伟. 基于复杂网络的海洋涡旋移动特征研究——以南海为例[J]. 海洋学报, 2017, 39(7): 110-123. doi: 10.3969/j.issn.0253-4193.2017.07.011
Du Yunyan, Mo Yang, Wang Huimeng, Yi Jiawei. Exploring the propagation characteristics of ocean eddies from the perspective of complex networks: A case study in the South China Sea[J]. Haiyang Xuebao, 2017, 39(7): 110-123. doi: 10.3969/j.issn.0253-4193.2017.07.011
Citation: Du Yunyan, Mo Yang, Wang Huimeng, Yi Jiawei. Exploring the propagation characteristics of ocean eddies from the perspective of complex networks: A case study in the South China Sea[J]. Haiyang Xuebao, 2017, 39(7): 110-123. doi: 10.3969/j.issn.0253-4193.2017.07.011

基于复杂网络的海洋涡旋移动特征研究——以南海为例

doi: 10.3969/j.issn.0253-4193.2017.07.011
基金项目: 国家自然科学基金项目(41371378,41421001)。

Exploring the propagation characteristics of ocean eddies from the perspective of complex networks: A case study in the South China Sea

  • 摘要: 海洋涡旋作为一种快速连续变化的海洋现象,如何分析和挖掘其移动特征成为当前海洋涡旋定量研究的重点。本文引入空间数据挖掘的社区网络划分方法,将涡旋过程看作复杂的移动网络,对涡旋移动的聚集性特征进行探索和分析。首先,以网格为统计单元对1992-2011年近20年南海海洋涡旋移动数据进行组织,基于图论模型构建了涡旋瞬时移动(TP),涡旋移动起止点(OD),涡旋最小描述距离的特征点移动网(MDL)和涡旋过程移动再生数据(RSP)4种状态的海洋涡旋的移动网络图;其次,采用基于快速模块度优化的区域划分方法分别得到4种状态下涡旋移动的聚集性区域;最后,利用弦图对区域内和区域间涡旋移动规律进行了可视化分析,发现海洋涡旋的RSP数据能够弥补原始涡旋移动数据在区域划分方法中呈现的数量不足的问题,能够在足够数据量的情况下,有效地发现从起点到终点的主要移动通道和涡旋移动的聚集性区域,这些区域反映了南海涡旋从其产生、发展到结束整个演化过程的聚集性特征。
  • Williams S, Petersen M, Bremer P-T, et al. Adaptive extraction and quantification of geophysical vortices[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12):2088-2095.
    Nencioli F, Dong Changming, Dickey T, et al. A Vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3):564-579.
    Dong Changming, Nencioli F, Liu Yu, et al. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data[J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8(6):1055-1059.
    Fu Lee-Lueng. Pattern and velocity of propagation of the global ocean eddy variability[J]. Journal of Geophysical Research:Oceans, 2009, 114(C11):C10017.
    Zhuang Wei, Du Yan, Wang Dongxiao, et al. Pathways of mesoscale variability in the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5):1055-1067.
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research Oceans, 2011, 116(C6):102-108.
    Morrow R, Le Traon P-Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry[J]. Advances in Space Research, 2012, 50(8):1062-1076.
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophys Research Letters, 2007, 34(15):L15606.
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
    Chaigneau A, Pezarro O. Eddy characteristics in the eastern South Pacific[J]. Journal of Geophysical Research Oceans, 2005, 110(C6):C06005.
    Kurian J, Colas F, Capet X, et al. Eddy properties in the California Current System[J]. Journal of Geophysical Research Oceans, 2011, 116(C8):309-316.
    Wang Guihua, Su Jilan, Chu Peter C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophys Research Letters, 2003, 30(21):2121.
    Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2/4):106-119.
    Boccaletti S, Latora V, Moreno Y, et al. Complex networks:Structure and dynamics[J]. Physics Reports, 2006, 424(4):175-308.
    Blondel V D, Guillaume J-L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment,2008(10):P10008.
    Morrow R, Birol F, Griffin D. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[M]. Washington, DC, ETATS-UNIS:American Geophysical Union, 2004.
    林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ.统计特征分析[J]. 海洋学报, 2007, 29(3):14-22. Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea[J]. Haiyang Xuebao, 2007, 29(3):14-22.
    Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. Intraseasonal variability in sea surface height over the South China Sea[J]. Journal of Geophysical Research Atmospheres, 2010, 115(C4):357-366.
    Girvan M, Newman M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
    Fortuanto S. Community detection in graphs[J]. Physics Reports, 2010, 486(3):75-174.
    Yi Jiawei, Du Yunyan, Liang Fuyuan, et al. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena[J]. International Journal of Geographical Information Science, 2014, 28(5):1010-1027.
    吴笛, 杜云艳, 易嘉伟, 等. 基于密度的轨迹时空聚类分析[J]. 地球信息科学学报, 2015, 17(10):1162-1171. Wu Di, Du Yunyan, Yi Jiawei, et al. Density-based spatiotemporal clustering analysis of trajectories[J]. Journal of Geo-information Science, 2015, 17(10):1162-1171.
    Newman M E, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review, 2004, 69(2):026113.
    陈更新. 南海中尺度涡的时空特征研究[D]. 青岛:中国科学院海洋研究所, 2010. Chen Gengxin. Research of the temporal and spatial characteristics on eddies in the South China Sea[D]. Qingdao:Institute of Oceanography, Chinese Academy of Sciences, 2010.
    Cai Shuqun, Su Jilan, Gan Zijun, et al. The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter[J]. Continental Shelf Research, 2002, 22(15):2247-2264.
    Fang Wendong, Fang Guohong, Shi Ping, et al. Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations[J]. Journal of Geophysical Research Oceans, 2002, 107(C11):3202.
    Yi Jiwei, Du Yunyan, Wang Xin, et al. A clustering analysis of eddies' spatial distribution in the South China Sea[J]. Ocean Science, 2012, 9(1):171-182.
    Hamilton P, Fargion G S, Biggs D C. Loop current eddy paths in the western Gulf of Mexico[J]. Journal of Physical Oceanography, 1999, 29(6):1180-1207.
    Cheng Xuhua, Qi Yiquan. Variations of eddy kinetic energy in the South China Sea[J]. Journal of Oceanography, 2010, 66(1):85-94.
    Wang Hui, Wang Dakui, Liu Guimei, et al. Seasonal variation of eddy kinetic energy in the South China Sea[J]. Acta Oceanologica Sinica, 2012, 31(1):1-15.
    Guo Diansheng. Flow mapping and multivariate visualization of large spatial interaction data[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6):1041-1048.
    莫洋, 杜云艳, 吴笛, 等. 海洋涡旋移动特征的区域划分方法及应用分析[J]. 地球信息科学学报, 2016, 18(7):910-919. Mo Yang, Du Yunyan, Wu Di, et al. Regionalization based on the propagation of ocean eddies:methods and applications[J]. Journal of Geo-information Science, 2016,18(7):910-919.
    冯涛, 艾廷华, 杨伟, 等. 基于Circos弦图的居民出行模式可视分析[J]. 华中师范大学学报(自然科学版),2016, 50(3):471-479. Feng Tao, Ai Tinghua,Yang Wei, et al.Visual analysis of residents travel pattern based on Circos Graph[J]. Journal of Central China Normal University(Natural Science), 2016,50(3):471-479.
  • 加载中
计量
  • 文章访问数:  1190
  • HTML全文浏览量:  10
  • PDF下载量:  938
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-04
  • 修回日期:  2016-11-29

目录

    /

    返回文章
    返回