留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性黏土除藻的絮凝形态学特征初步研究

曹西华 宋秀贤 俞志明

曹西华, 宋秀贤, 俞志明. 改性黏土除藻的絮凝形态学特征初步研究[J]. 海洋学报, 2017, 39(6): 33-42. doi: 10.3969/j.issn.0253-4193.2017.06.004
引用本文: 曹西华, 宋秀贤, 俞志明. 改性黏土除藻的絮凝形态学特征初步研究[J]. 海洋学报, 2017, 39(6): 33-42. doi: 10.3969/j.issn.0253-4193.2017.06.004
Cao Xihua, Song Xiuxian, Yu Zhiming. Morphological attributes of modified clays coagulated with red tide algae[J]. Haiyang Xuebao, 2017, 39(6): 33-42. doi: 10.3969/j.issn.0253-4193.2017.06.004
Citation: Cao Xihua, Song Xiuxian, Yu Zhiming. Morphological attributes of modified clays coagulated with red tide algae[J]. Haiyang Xuebao, 2017, 39(6): 33-42. doi: 10.3969/j.issn.0253-4193.2017.06.004

改性黏土除藻的絮凝形态学特征初步研究

doi: 10.3969/j.issn.0253-4193.2017.06.004
基金项目: 国家自然科学基金项目(41576119);国家自然科学基金委员会-山东省人民政府联合资助海洋科学研究中心项目(U1606404);海洋公益性行业科研专项项目(201305003)。

Morphological attributes of modified clays coagulated with red tide algae

  • 摘要: 在理论上改性黏土絮凝体的形态变化对其除藻过程有指示作用,可作为改性黏土用量和用法调控的依据,本文探讨了现有絮凝颗粒形态学观测与分析方法在改性黏土除藻效率评价上的适用性。借助激光颗粒表征技术和电子显微成像技术,本文观测了改性黏土除藻时的颗粒表面电性、粒径分布、絮凝体结构等絮凝形态学特征,分析了其与除藻效率的相关性。结果表明,现有观测方法可以表征改性导致的黏土颗粒Zeta电位反转、改性前后黏土在不同介质中的颗粒粒级分布差异、以及改性黏土与微藻形成絮凝体的多种显微结构;但由于较大粒径絮体对现有方法观测结果的影响更大,各种黏土的粒径特征与其除藻效率之间没有显著的相关性。现有观测方法获得的改性黏土颗粒形态特征仍不能反映其消除藻细胞的精细过程,特别是由于缺乏有效的絮凝体形态分析方法而导致现有形态参数还不能指示除藻效率的变化,亟需发展适用于改性黏土法除藻过程的颗粒形态分析新方法。
  • Anderson D M, Anderson P, Bricelj V M, et al. Monitoring and management strategies for harmful algal blooms in coastal waters[R]. Asia Pacific Economic Programme, Intergovernmental Oceanographic Commission of UNESCO, Technical Series No. 59. Paris, France: UNESCO, 2001:183
    Anderson D M. Turning back the harmful red tide[J]. Nature, 1997, 388(6642): 513-514.
    俞志明, 邹景忠, 马锡年. 一种提高粘土矿物去除赤潮生物能力的新方法[J]. 海洋与湖沼, 1994, 25(2): 226-232. Yu Zhiming, Zou Jingzhong, Ma Xinian. A new method to improve the capability of clays for removing red tide organisms[J]. Oceanologia et Limnologia Sinica, 1994, 25(2): 226-232.
    俞志明, 邹景忠, 马锡年, 等. 治理赤潮的化学方法[J]. 海洋与湖沼, 1993, 24(3): 314-318. Yu Zhiming, Zou Jingzhong, Ma Xinian, et al. The chemical means of controlling red tides[J]. Oceanologia et Limnologia Sinica, 1993, 24(3): 314-318.
    俞志明, 宋秀贤, 张波, 等. 粘土表面改性及对赤潮生物絮凝作用研究[J]. 科学通报, 1999, 44(3): 308-311. Yu Zhiming, Song Xiuxian, Zhang Bo, et al. Clay surface modification and its coagulation of red tide organisms[J]. Chinese Science Bulletin, 1999, 44(3): 617-620.
    Sengco M R, Li Aishao, Tugend K, et al. Removal of red- and brown-tide cells using clay flocculation. Ⅰ. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens[J]. Marine Ecology Progress Series, 2001, 210: 41-53.
    Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅰ. Coagulation of red tide organisms with clays[J]. Chinese Journal of Oceanology and Limnology, 1994, 12(3): 193-200.
    Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅱ. Coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatment[J]. Chinese Journal of Oceanology and Limnology, 1994, 12(4): 316-324.
    Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅲ. The coagulation of kaolin on red tide organisms[J]. Chinese Journal of Oceanology and Limnology, 1995, 13(1): 62-70.
    曹西华, 宋秀贤, 俞志明, 等. 有机改性粘土去除赤潮生物的机制研究[J]. 环境科学, 2006, 27(8): 1522-1530. Cao Xihua, Song Xiuxian, Yu Zhiming, et al. Mechanisms of removing red tide organisms by organo-clays[J]. Environmental Science, 2006, 27(8): 1522-1530.
    曹西华, 宋秀贤, 俞志明. 改性粘土去除赤潮生物及其对养殖生物的影响[J]. 环境科学, 2004, 25(5): 148-152. Cao Xihua, Song Xiuxian, Yu Zhiming. Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms[J]. Environmental Science, 2004, 25(5): 148-152.
    曹西华, 俞志明. 有机改性粘土去除有害赤潮藻的研究[J]. 应用生态学报, 2003, 14(7): 1169-1172. Cao Xihua, Yu Zhiming. Extinguishment of harmful algae by organo-clay[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1169-1172.
    Yu Zhiming, Sengco M R, Anderson D M. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal of Applied Phycology, 2004, 16(2): 101-110.
    蒋展鹏, 尤作亮. 混凝形态学的研究进展[J]. 给水排水, 1998, 24(10): 70-75. Jiang Zhanpeng, You Zuoliang. Progress of aggregation morphology study[J]. Water & Wastewater Engineering, 1998, 24(10): 70-75.
    王毅力, 李大鹏, 解明曙. 絮凝形态学研究及进展[J]. 环境污染治理技术与设备, 2003, 4(10): 1-9. Wang Yili, Li Dapeng, Xie Mingshu. Research and advance in flocculation morphology[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(10): 1-9.
    Vahedi A, Gorczyca B. Application of fractal dimensions to study the structure of flocs formed in lime softening process[J]. Water Research, 2011, 45(2): 545-556.
    王东升, 汤鸿霄. 分形理论在混凝研究中的应用与展望[J]. 工业水处理, 2001, 21(7): 16-19, 44. Wang Dongsheng, Tang Hongxiao. Application of fractal theory on coagulation: a critical review[J]. Industrial Water Treatment, 2001, 21(7): 16-19, 44.
    李冬梅, 谭万春, 黄明珠, 等. 絮凝体的分形特性研究[J]. 给水排水, 2004, 30(5): 5-10. Li Dongmei, Tan Wanchun, Huang Mingzhu, et al. Study on fractal properties of flocs[J]. Water & Wastewater Engineering, 2004, 30(5): 5-10.
    Nan Jun, He Weipeng. Characteristic analysis on morphological evolution of suspended particles in water during d潹慮条畭汩慣琠楦潬湯?呣桵敬潡牴祩孯?崠???散楥橳楳湛杊???桄楥湳慡??畮楡汴摩楯湮朠??湤搠畗獡瑴牥祲?偔牲敥獡獴???ぴ???‰??????????????戵爭?嬴金?嵢??楛??????爬戠潆攢?听???愛渮猠敮滝?????匆??傮桡秓瑩澟瀴沄愔湶歛瑊潝渮?慦杉朆狥攧杦慦璥攬?昲漰爰洴愬琠椲漶渨??漺戠猲攱爭瘲愲琬椠漲渹献?潌晩?灍慥瑮瑧攬爠湌獵?慘湩摥?浵敡据栬愠湈極獡浮獧?潇景?捧敬汵汯?猠瑔楨捥欠楡湰杰?慩湣摡?瑩桯敮?獡楮杤渠楲晥楳捥慡湲捣敨?潯晦?整硨潥瀠潦汲祡浣整牡楬挠?浥慣瑨敮牯楬慯汧孹?嵯???潬畯牣湳愠汩?漠晴?健氠慴湲步瑡潴湭?剮整猠敯慦爠捭桩????????????????????????er[J]. Journal of Wuhan University of Technology, 2004, 26(2): 21-22, 29.
    Henderson R, Parsons S A, Jefferson B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae[J]. Water Research, 2008, 42(8/9): 1827-1845.
    王洪亮. 颗粒物对藻华生物的絮凝作用及其分形数值模拟研究[D]. 青岛: 中国科学院海洋研究所, 2010. Wang Hongliang. Study on the flocculation of HAB organisms by particles and its fractal numerical simulation[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010.
    林勇新. 形态特征及藻源有机质对改性粘土絮凝有害藻华生物效率的影响[D]. 青岛: 中国科学院海洋研究所, 2013. Lin Yongxin. Influence of aggregates morphology and algal organic mateirals on the efficiency of modified clays deployed in mitigation of HAB organisms[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2013.
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.4-2007, 海洋监测规范 第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008: 88-91. General Administration of Quality Supervision, Inspection, Quarantine of the People's Republic of China. GB 17378.4-2007, The specification for marine monitoring-Part 4: seawater analysis[S]. Beijing: China Standards Press, 2008: 88-91.
    Swartzen-Allen S L, Matijevic E. Surface and colloid chemistry of clays[J]. Chemical Reviews, 1974, 74(3): 385-400.
    Tombácz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34(1/4): 105-124.
    Du Jianhua, Morris G, Pushkarova R A, et al. Effect of surface structure of kaolinite on aggregation, settling rate, and bed density[J]. Langmuir, 2010, 26(16): 13227-13235.
    汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京: 中国建筑工业出版社, 2006: 35-39, 70-73. Tang Hongxiao. Inorganic Polymer Flocculants and C
  • 加载中
计量
  • 文章访问数:  763
  • HTML全文浏览量:  13
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-14
  • 修回日期:  2017-02-01

目录

    /

    返回文章
    返回