留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正型缓坡方程的有限元模型

倪云林 滕斌 丛龙飞

倪云林, 滕斌, 丛龙飞. 修正型缓坡方程的有限元模型[J]. 海洋学报, 2017, 39(1): 104-110. doi: 10.3969/j.issn.0253-4193.2017.01.011
引用本文: 倪云林, 滕斌, 丛龙飞. 修正型缓坡方程的有限元模型[J]. 海洋学报, 2017, 39(1): 104-110. doi: 10.3969/j.issn.0253-4193.2017.01.011
Ni Yunlin, Teng Bin, Cong Longfei. FEM model of the modified mild slope equation[J]. Haiyang Xuebao, 2017, 39(1): 104-110. doi: 10.3969/j.issn.0253-4193.2017.01.011
Citation: Ni Yunlin, Teng Bin, Cong Longfei. FEM model of the modified mild slope equation[J]. Haiyang Xuebao, 2017, 39(1): 104-110. doi: 10.3969/j.issn.0253-4193.2017.01.011

修正型缓坡方程的有限元模型

doi: 10.3969/j.issn.0253-4193.2017.01.011
基金项目: 国家自然科学基金(51379032,51490672)。

FEM model of the modified mild slope equation

  • 摘要: 与缓坡方程相比,修正型缓坡方程增加了地形曲率项和坡度平方项,从而提高了数值求解的复杂性。本文将计算域划分为内域和外域,内域为水深变化区域,使用修正型缓坡方程,其中的地形曲率项和坡度平方项可用有限单元各节点的水深信息和单元插值函数表示,外域为水深恒定区,速度势满足Helmholtz方程,通过内外域的边界匹配建立有限元方程,并用高斯消去法求解。进而分别模拟了波浪传过Homma岛和圆形浅滩的变形,其结果与相关的解析解和实验数据吻合良好,证明了本文有限元模型的正确性。同时,通过与实验数据的对比也明显看出,在地形坡度较陡的情况下,修正型缓坡方程较缓坡方程具有更高的计算精度。
  • Berkhoff J C W. Computation of Combined Refraction-diffraction[M]. Delft Hydraulics Laboratory, 1974.
    Booij N. A note on the accuracy of the mild-slope equation[J]. Coastal Engineering, 1983, 7(3):191-203.
    Kirby J T. A general wave equation for waves over rippled beds[J]. Journal of Fluid Mechanics, 1986, 162:171-186.
    Chamberlain P G, Porter D. The modified mild-slope equation[J]. Journal of Fluid Mechanics, 1995, 291:393-407.
    Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1997, 123(5):280-286.
    Suh K D, Lee C, Park Y H, et al. Experimental verification of horizontal two-dimensional modified mild-slope equation model[J]. Coastal Engineering, 2001, 44(1):1-12.
    Silva R, Borthwick A G L, Taylor R E. Numerical implementation of the harmonic modified mild-slope equation[J]. Coastal engineering, 2005, 52(5):391-407.
    李孟国, 蒋德才. 关于波浪缓坡方程的研究[J]. 海洋通报, 1999, 18(4):70-92. Li Mengguo, Jiang Decai. A review on the study of mild-slope equation[J]. Marine Science Bulletin, 1999,18(4):70-92.
    Chen H S, Mei C C. Oscillations and wave forces in a man-made harbor in the open sea[C]//Symposium on Naval Hydrodynamics, 10th, Proceedings, Pap and Discuss, Cambridge, Mass, June 24-28, 1974. 1976.
    Tsay T K, Liu P L F. A finite element model for wave refraction and diffraction[J]. Applied Ocean Research, 1983, 5(1):30-37.
    Houston J R. Combined refraction and diffraction of short waves using the finite element method[J]. Applied Ocean Research, 1981, 3(4):163-170.
    赵明. 波浪作用下建筑物周围的泥沙冲刷及海床演变[D]. 大连:大连理工大学, 2002. Zhao Ming. The local scour and topographical change around offshore structures under wave action[D]. Dalian:Dalian University of Technology, 2002.
    赵明, 滕斌. 缓坡方程的有限元解[J]. 大连理工大学学报, 2000, 40(1):117-119. Zhao Ming, Teng Bin. Finite element solutions for mild slope equation[J]. Journal of Dalian University of Technology, 2000, 40(1):117-119.
    Zhai X Y, Liu H W, Xie J J. Analytic study to wave scattering by a general Homma island using the explicit modified mild-slope equation[J]. Applied Ocean Research, 2013, 43:175-183.
    Chau F P, Taylor R E. Second-order wave diffraction by a vertical cylinder[J]. Journal of Fluid Mechanics, 1992, 240(1):571-599.
  • 加载中
计量
  • 文章访问数:  923
  • HTML全文浏览量:  8
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-05-17

目录

    /

    返回文章
    返回