留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用应力场预测热液区域——以TAG区为例

陈钦柱 陶春辉 廖时理 李怀明 邓显明

陈钦柱, 陶春辉, 廖时理, 李怀明, 邓显明. 利用应力场预测热液区域——以TAG区为例[J]. 海洋学报, 2017, 39(1): 46-51. doi: 10.3969/j.issn.0253-4193.2017.01.005
引用本文: 陈钦柱, 陶春辉, 廖时理, 李怀明, 邓显明. 利用应力场预测热液区域——以TAG区为例[J]. 海洋学报, 2017, 39(1): 46-51. doi: 10.3969/j.issn.0253-4193.2017.01.005
Chen Qinzhu, Tao Chunhui, Liao Shili, Li Huaiming, Deng Xianming. Analyzing the gravitational stress field to forecast hydrothermal field-A case study of TAG hydrothemal field[J]. Haiyang Xuebao, 2017, 39(1): 46-51. doi: 10.3969/j.issn.0253-4193.2017.01.005
Citation: Chen Qinzhu, Tao Chunhui, Liao Shili, Li Huaiming, Deng Xianming. Analyzing the gravitational stress field to forecast hydrothermal field-A case study of TAG hydrothemal field[J]. Haiyang Xuebao, 2017, 39(1): 46-51. doi: 10.3969/j.issn.0253-4193.2017.01.005

利用应力场预测热液区域——以TAG区为例

doi: 10.3969/j.issn.0253-4193.2017.01.005
基金项目: 国家重点基础研究发展计划(2012CB417305);国际海域资源调查与开发“十二五”重大项目(DY125-11-R-01,DY125-11-R-05);国际海底管理局(ISA)捐赠基金。

Analyzing the gravitational stress field to forecast hydrothermal field-A case study of TAG hydrothemal field

  • 摘要: 本文根据TAG区的钻探资料及岩心测试结果,建立了双层地质模型,在此基础上利用ANSYS应力软件并结合TAG热液区的地形数据对该区进行应力模拟。结果表明:热液喷口区域与最大水平应力低值区有较好的对应关系。其中仍处于活动状态的TAG丘状体区呈现明显的局部最大水平应力低值;而已经停止活动并且不具有典型喷口地形的MIR丘状体区域则处于最大水平应力的非封闭低值区域。据此,本文在TAG丘状体区域圈定了5个喷口可能区域,钻探结果揭示区内存在较好的矿化和蚀变现象,表明应力场预测法可能是一种有效的成矿预测方法。
  • Martin C D, Kaiser P K, Christiansson R. Stress, instability and design of underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7):1027-1047.
    Sch pa A, Pantaleo M, Walter T R. Scale-dependent location of hydrothermal vents:Stress field models and infrared field observations on the Fossa Cone, Volcano Island, Italy[J]. Journal of Volcanology and Geothermal Research, 2011, 203(3):133-145.
    侯明勋, 葛修润, 王水林. 水力压裂法地应力测量中的几个问题[J]. 岩土力学, 2003, 24(5):840-844. Hou Mingxun, Ge Xiurun, Wang Shuilin. Discussion on application of hydraulic fracturing method to geostressmeasurement[J].Rock and Soil Mechanics, 2003, 24(5):840-844.
    何江达, 谢红强, 王启智, 等. 官地水电站坝址区初始地应力场反演分析[J]. 岩土工程学报, 2009, 31(2):166-171. He Jiangda, Xe Hongqiang, Wang Qizhi, et al. Inversion analysis of initial geostress in dam site of Guandi Hydropower Project[J]. Chinese Journal of Geotechnical Engineering, 2009,31(2):166-171.
    于崇, 李海波, 李国文, 等. 大连地下石油储备库地应力场反演分析[J]. 岩土力学, 2010, 31(12):3984-3990. Yu Chong, Li Haibo, Li Guowen, et al. Inversion analysis of initial stress field of Dalian underground oil storage cavern[J]. Rock and Soil Mechanics, 2010, 31(12):3984-3990.
    金伟良, 喻军华, 邹道勤. 模拟高边坡初始地应力场的边界位移法[J]. 土木工程学报, 2003, 36(10):72-75. Jin Weiliang, Yu Junhua, Zou Daoqin. A new method of simulating initial ground stress field in high slope[J]. China Civil Engineering Journal, 2003, 36(10):72-75.
    Buck W R, Lavier L L, Poliakov A N B. Modes of faulting at mid-ocean ridges[J]. Nature, 2005, 434(7034):719-723.
    吴仲玮, 孙晓明, 王琰. 中印度洋脊Edmond热液区多金属硫化物中超显微金银矿物的发现及其成矿意义[J]. 矿物学报, 2013(2):670-671. Wu Zhongwei, Song Xiaoming, Wang Yan, et al. The discovery of native gold in massive sulfides from the Edmond hydrothermal field, Central Indian Ridge and its significance[J]. Acta Petrologica Sinica, 2013(2):670-671.
    Petukhov S I, Anokhin V M, Mel'nikov M E, et al. Geodynamic features of the northwestern part of the Magellan Seamounts, Pacific Ocean[J]. Journal of Geography and Geology, 2015, 7(1):35.
    Hyndman R D, Drury M J. The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge[J]. Journal of Geophysical Research, 1976, 81(23):4042-4052.
    白世伟, 李光煜. 二滩水电站坝区岩体应力场研究[J]. 岩石力学与工程学报, 1982, 1(1):45-56. Bai Shiwei, Li Guangyu. Research on stress field around dam area of Ertan Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 1982, 1(1):45-56.
    柴贺军, 刘浩吾, 王明华. 大型电站坝区应力场三维弹塑性有限元模拟与拟合[J]. 岩石力学与工程学报, 2002, 21(9):1314-1318. Cai Hejun, Liu Haowu, Wang Minghua. Stress field simulation and fitting by 3D elastoplasticity FEM for large hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9):1314-1318.
    Jacobs J A, Russell R D, Wilson J T. Physics and Geology[M]. New York:McGraw-Hill, 1959.
    Evans R L. A seafloor gravity profile across the TAG hydrothermal mound[J]. Geophysical Research Letters, 1996, 23(23):3447-3450.
    Humphris S E, Cann J R. Constraints on the energy and chemical balances of the modern TAG and ancient Cyprus seafloor sulfide deposits[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2000, 105(B12):28477-28488.
    Rona P A, Hannington M D, Raman C V, et al. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Economic Geology (plus the Bulletin of the Society of Economic Geologists), 1993, 88(8):1989-1989.
    Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B7):12527-12555.
    Martel S J, Muller J R. A two-dimensional boundary element method for calculating elastic gravitational stresses in slopes[J]. Pure and Applied Geophysics, 2000, 157(6/8):989-1007.
    Anderson E M. The dynamics of faulting and dyke formation with applications to Britain[M]. Edinburgh:Oliver & Boyd, 1951.
    Humphris S E. Rare earth element composition of anhydrite:implications for deposition and mobility within the active TAG hydrothermal mound[C]//Proceedings-Ocean Drilling Program Scientific Results. National Science Foundation, 1998:143-162.
  • 加载中
计量
  • 文章访问数:  856
  • HTML全文浏览量:  8
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-24
  • 修回日期:  2016-06-28

目录

    /

    返回文章
    返回