Propagation and damping of tidal energy in the Pearl River Delta
-
摘要: 因径流潮汐相互作用,三角洲各水道的能通量包含径流引起的净通量及潮汐引起的潮能通量。本文利用珠江三角洲多断面实测水位及流量的同步测量数据,建立基于径潮耦合的调和分析模型,剥离径流信号,计算出各站的总潮能及M2、K1及高频浅水分潮的潮能,对珠江三角洲潮能的沿程传播及衰减进行研究。结果表明,通过虎门进入珠江三角洲的潮波能量约占51.2%,而通过崖门、蕉门、磨刀门传入三角洲的潮能约占37%;同时,因地形摩擦、径流耗能效应,三角洲各水道的总能量损耗为148.33 MW。潮波能量按汇聚型和分散型两大类型沿三角洲不同位置传播并沿程衰减。虎门狮子洋及珠江正干、崖门至潭江石咀两大水道体系,其潮能沿程分散传入不同汊道,断面总潮能的衰减幅度大于单宽潮能通量的衰减,单宽潮动能沿程平均衰减速率大于潮势能,半日分潮的潮能衰减速率大于全日分潮。虎门狮子洋因其形态影响,M2分潮振幅(或势能)的衰减最小,虎门至泗盛围段增加,平均每千米约增加0.77%。西四口门潮能汇聚于西海水道天河断面,总潮能的衰减速率小于磨刀门水道单宽潮能衰减速率。沿横门、洪奇门、蕉门进入的潮波多次交汇、分散,自横门至小榄、南华,南沙至海尾、荣奇,其单宽潮动能及M2、K1分潮动能的衰减速率小于潮势能,高频分潮势能沿程增加。Abstract: Due to the interaction of runoff and tide, the energy flux of delta's channels contains the runoff energy and the tidal energy. Based on the data of water level and flow measurement in the Pearl River Delta, an interaction model between the runoff and the tide was established to calculate the M2, K1 tidal energy and the tidal energy of high tidal frequency without the signal of river flow. The results showed that about 51.2% of the tidal energy through the Humen into delta, and the tidal energy through Yamen, Jiaomen, Modaomen accounted for about 37%. For the friction effect of topographical and runoff, 148.33 MW energy in the delta is loss. Tidal energy propagated as the convergent type or divergent type along the delta and damped. The unit kinetic energy along the path decay quicker than the tidal potential energy, and semidiurnal tidal energy can decay greater than that of diurnal tide, which is more significant in the upper delta. For the influence of the morphology of Humen-Shiziyang outlet, the attenuation of M2 tidal amplitude (or energy) is the smallest, even the M2 tidal energy increase approximately 0.77% from Humen to Sishengwei. In the two channels system including Humen-Shiziyang outlet and Yamen outlet to Shizui of Tanjiang, the total tidal energy attenuation is greater than the attenuation of unit tidal energy for the tide energy diverge into different branches. But the total tidal energy attenuation is greater than the attenuation of unit tidal energy in the west river delta for the tide energy from Modaom, Jitimen, Hutiaomen and Yamen converge. The tides from Hengmen, Hongqimen and Jiaomen converged and diverged in the middle delta, and the total kinetic energy, M2 tidal energy, K1 tidal energy is less than the tidal potential energy. The tidal potential energy of high frequency including D3 and D4 constituents has increased along the channel.
-
Key words:
- the Pearl River Delta /
- tidal energy /
- runoff /
- river-tide model /
- damping
-
Zhong Liejun, Li Ming. Tidal energy fluxes and dissipation in the Chesapeake Bay[J]. Continental Shelf Research, 2006, 26(6):752-770. 倪培桐, 韦惺, 吴超羽, 等. 珠江河口潮能通量与耗散[J]. 海洋工程, 2011, 29(3):67-75. Ni Peitong, Wei Xing, Wu Chaoyu, et al. Tidal energy flux and dissipation in the Pearl River Estuary[J]. The Ocean Engineering, 2011, 29(3):67-75. 欧素英, 杨清书. 珠江三角洲网河区径流潮流相互作用分析[J]. 海洋学报, 2004, 26(1):125-131. Ou Suying, Yang Qingshu. Interaction of fluctuating river flow with a barotropic tide in river network of the Zhujiang Delta[J]. Haiyang Xuebao, 2004, 26(1):125-131. Horrevoets A C, Savenije H H G, Schuurman J N, et al. The influence of river discharge on tidal damping in alluvial estuaries[J]. Journal of Hydrology, 2004, 294(4):213-228. 张学庆, 刘晓敏, 王鹏程, 等. 潮-径相互作用下大辽河口潮能通量的数值模拟[J]. 水动力学研究与进展, 2012, 27(3):331-338. Zhang Xueqing, Liu Xiaomin, Wang Pengcheng, et al. Numerical simulation of the tidal energy flux influenced by tide and runoff in Daliaohe River Estuary[J]. Chinese Journal of Hydrodynamics, 2012, 27(3):331-338. Godin G. Modification of river tides by the discharge[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2):257-274. Sassi M G, Hoitink A J F. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river[J]. Journal of Geophysical Research:Oceans, 2013, 118(9):4139-4151. Matte P, Jay D A, Zaron E D. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3):569-589. Matte P, Secretan Y, Morin J. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary:an application of nonstationary tidal harmonic analysis[J]. Journal of Geophysical Research:Oceans, 2014, 119(9):5724-5744, doi: 10.1002/2014JC009791. 罗宪林, 杨清书, 贾良文, 等. 珠江三角洲网河河床演变[M]. 广州:中山大学出版社, 2002:19-25. Luo Xianlin, Yang Qingshu, Jia Liangwen, et al. The River-Bed Evolution of the Pearl River Network, China[M]. Guangzhou:Sun Yat-sen University Press, 2002:19-25. Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8):929-937. Cai Huayang, Savenije H H G, Yang Qingshu, et al. Influence of river discharge and dredging on tidal wave propagation:modaomen Estuary case[J]. Journal of Hydraulic Engineering, 2012, 138(10):885-896. Kukulka T, Jay D A. Impacts of Columbia River discharge on salmonid habitat:1. A nonstationary fluvial tide model[J]. Journal of Geophysical Research, 2003, 108(C9):3293.
计量
- 文章访问数: 986
- HTML全文浏览量: 34
- PDF下载量: 1039
- 被引次数: 0