Bellou S, Baeshen M N, Elazzazy A M, et al. Microalgal lipids biochemistry and biotechnological perspectives[J]. Biotechnol Adv, 2014, 32(8):1476-1493.
|
De Morais M G, Vaz Bda S, de Morais E G, et al. Biologically active metabolites synthesized by microalgae[J]. Biomed Res Int, 2015, 2015:835761.
|
Qin S, Jiang P, Tseng C K. Molecular biotechnology of marine algae in China[J]. Hydrobiologia, 2004, 512(1/3):21-26.
|
Niu Y F, Yang Z K, Zhang M H, et al. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker[J]. BioTech Rap Dis, 2012, doi: 10.2144/000113881.
|
Radakovits R, Eduafo P M, Posewitz M C. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum[J]. Metab Eng, 2011, 13(1):89-95.
|
Qin S, Lin H Z, Jiang P. Advances in genetic engineering of marine algae[J]. Biotechnol Adv, 2012, 30(6):1602-1613.
|
Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology-from genetics to synthetic biology[J]. Biotechnol Adv, 2015, 33(6):1194-1203.
|
Xue J, Niu Y F, Huang T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metab Eng, 2015, 27:1-9.
|
Joassin P, Delille B, Soetaert K, et al. Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi:modelling a mesocosm experiment[J]. J Marine Syst, 2011, 85(3/4):71-85.
|
Sayanova O, Haslam R P, Calerón M V, et al. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi[J]. Phytochemistry, 2011, 72(7):594-600.
|
Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457):209-213.
|
Evans C, Pond D W, Wilson W H. Changes in Emiliania huxleyi fatty acid profiles during infection with E. huxleyi virus 86:physiological and ecological implications[J]. Aquat Microb Ecol, 2009, 55(3):219-228.
|
Michaelson L V, Dunn T M, Napier J A. Viral trans-dominant manipulation of algal sphingolipids[J]. Trends Plant Sci, 2010, 15(12):651-655.
|
Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus[J]. Science, 2005, 309(5737):1090-1092.
|
Liu X H, Zheng T L, Cai Y X, et al. Cloning, expression and characterization of serine palmitoyltransferase (SPT)-like gene subunit (LCB2) from marine Emiliania huxleyi virus (Coccolithovirus)[J]. Acta Oceanologica Sinica, 2012, 31(6):127-138.
|
Vardi A, Van Mooy B A S, Fredricks H F, et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton[J]. Science, 2009, 326(5954):861-865.
|
Laguna R, Romo J, Read B A, et al. Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi[J]. Appl Environ Microbiol, 2001, 67(9):3824-3831.
|
Sambrook J, Russell D W. 分子克隆实验指南[M]. 3版. 黄培堂, 译. 北京:科学出版社, 2002. Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual[M]. 3rd ed. Huang Peitang,Trans. Beijing:Science Press, 2002.
|
Muto M, Fukuda Y, Nemoto M, et al. Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580-a high triglyceride producer[J]. Mar Biotechnol, 2013, 15(1):48-55.
|
余爱丽, 赵晋锋, 王高鸿, 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析[J]. 作物学报, 2016, 42(2):295-302. Yu Aili, Zhao Jinfeng, Wang Gaohong, et al. Expression analysis of two CIPK genes under abiotic stress in foxtail millet[J]. Acta Agronomica Sinica, 2016, 42(2):295-302.
|
郑晓瑜, 郭晋艳, 张毅, 等. 植物非生物胁迫诱导启动子顺式作用元件的研究方法[J]. 植物生理学报, 2011, 47(2):129-135. Zheng Xiaoyu, Guo Jinyan, Zhang Yi, et al. Research methods of cis-acting elements in plant abiotic stress inducible promoters[J]. Plant Physiology Journal, 2011, 47(2):129-135.
|
Cheng S J, Wang Z Y, Hong M M. Rice bZIP protein, REB, interacts with GCN4 motif in promoter of Waxy gene[J]. Science in China Series C:Life Sciences, 2002, 45(4):352-360.
|
张积森, 林清凡, 方静平, 等. 甘蔗SPS Ⅲ启动子区ATCT-motif和CAT-box元件的酵母单杂交报告载体构建[J]. 福建师范大学学报(自然科学版), 2013, 29(1):86-89. Zhang Jisen, Lin Qingfan, Fang Jingping, et al. Construction of yeast one-hybrid reporter vector for screening the binding proteins of ATCT-motif and CAT-box in SPS Ⅲ promoter[J]. Journal of Fujian Normal University (Natural Science Edition), 2013, 29(1):86-89.
|
许家辉, 朱娜, 温超, 等. 龙眼LEAFY同源基因启动子的克隆与序列分析[J]. 果树学报, 2011, 28(4):689-693. Xu Jiahui, Zhu Na, Wen Chao, et al. Cloning and sequence analysis of LEAFY gene promoter from longan (Dimocarpus longan)[J]. Journal of Fruit Science, 2011, 28(4):689-693.
|
耿德贵, 王义琴, 李文彬, 等. 杜氏盐藻基因工程选择标记的研究[J]. 生物技术, 2001, 11(5):1-3. Geng Degui, Wang Yiqin, Li Wenbin, et al. Study on selective marker of Dunaliella salina genetic engineering[J]. Biotechnology, 2001, 11(5):1-3.
|
陈颖, 李文彬, 张利明, 等. 小球藻对5种常用基因工程抗生素的敏感性研究[J]. 海洋与湖沼, 1999, 30(5):500-505. Chen Ying, Li Wenbing, Zhang Liming, et al. Study on sensitivities of Chlorella Ellipsoidea to 5 antibiotics in genetic engineering[J]. Oceanologia et Limnologia Sinica, 1999, 30(5):500-505.
|
曹军平, 费志清, 刘必谦, 等. 金藻基因工程选择标记的研究[J]. 海洋科学, 2001, 25(7):6-8. Cao Junping, Fei Zhiqing, Liu Biqian, et al. Study on the selectable marker for Dicrateria inornata gene engineering[J]. Marine Sciences, 2001, 25(7):6-8.
|
Cerutti H, Johnson A M, Gillham N W, et al. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii:integration into the nuclear genome and gene expression[J]. Genetics, 1997, 145(1):97-110.
|
Kovar J L, Zhang J, Funke R P, et al. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation[J]. Plant J, 2002, 29(1):109-117.
|
Nelson J A, Savereide P B, Lefebvre P A. The CRY1 gene in Chlamydomonas reinhardtii:structure and use as a dominant selectable marker for nuclear transformation[J]. Mol Cell Biol, 1994, 14(6):4011-4019.
|
Sizova I, Fuhrmann M, Hegemann P. A streptomyces rimosus aph VⅢ gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii[J]. Gene, 2001, 277(1/2):221-229.
|
Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox:a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker[J]. Plant J, 1999, 17(1):99-109.
|
Slavskaia L A, Lippmerier J C, Kroth P G, et al. Transformation of the diatom Phaeodactylum tricornutum(bacillariophyceae) with a variety of selectable marker and reporter genes[J]. J Phycol, 2000, 36(2):379-386.
|
Apt K E, Kroth-Pancic P G, Grossman A R. Stable nuclear transformation of the diatom Phaeodactylum triconutum[J]. Mol Gen Genet, 1996, 252(5):572-579.
|
郑国庭, 姜鹏, 秦松, 等. 三角褐指藻(Phaeodactylum tricornutum)通用转化载体的构建[J]. 生物学杂志, 2012, 29(4):8-11. Zheng Guoting, Jiang Peng, Qin Song, et al. Construction of a transformation vector for diatom Phaeodactylum tricornutum[J]. Journal of Biology, 2012, 29(4):8-11.
|
Paludan K, Duch M, Jørgensen P, et al. Graduated resistance to G418 leads to differential selection of cultured mammalian cells expressing the neo gene[J]. Gene, 1989, 85(2):421-426.
|
Miyagawa A, Okami T, Kira N, et al. Research note:high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis[J]. Phycol Res, 2009, 57(2):142-146.
|
Watanabe S, Ohnuma M, Sato J, et al. Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae[J]. J Gen Appl Microbiol, 2011, 57(1):69-72.
|
Li F C, Qin S, Jiang P, et al. The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminaria japonica(Phaeophyta)[J]. J Appl Phycol, 2009, 21(3):287-293.
|
Miyagawa-Yamaguchi A, Okami T, Kira N, et al. Stable nuclear transformation of the diatom Chaetoceros sp.[J]. Phycol Res, 2011, 59(2):113-119.
|
Ladygin V G. Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation[J]. Process Biochem, 2004, 39(11):1685-1691.
|
Falciatore A, Casotti R, Leblanc C, et al. Transformation of nonselectable reporter genes in marine diatoms[J]. Mar Biotechnol, 1999, 1(3):239-251.
|