留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镭、氡同位素示踪调水调沙对黄河口水体运移及营养盐分布特征的影响

张晓洁 许博超 夏冬 江雪艳 简慧敏

张晓洁, 许博超, 夏冬, 江雪艳, 简慧敏. 镭、氡同位素示踪调水调沙对黄河口水体运移及营养盐分布特征的影响[J]. 海洋学报, 2016, 38(8): 36-43. doi: 10.3969/j.issn.0253-4193.2016.08.004
引用本文: 张晓洁, 许博超, 夏冬, 江雪艳, 简慧敏. 镭、氡同位素示踪调水调沙对黄河口水体运移及营养盐分布特征的影响[J]. 海洋学报, 2016, 38(8): 36-43. doi: 10.3969/j.issn.0253-4193.2016.08.004
Zhang Xiaojie, Xu Bochao, Xia Dong, Jiang Xueyan, Jian Huimin. Using natural radium and radon isotopes trace the water transport process and nutrients distribution in the Yellow River Estuary under the influence of the Water-Sediment Regulation Scheme[J]. Haiyang Xuebao, 2016, 38(8): 36-43. doi: 10.3969/j.issn.0253-4193.2016.08.004
Citation: Zhang Xiaojie, Xu Bochao, Xia Dong, Jiang Xueyan, Jian Huimin. Using natural radium and radon isotopes trace the water transport process and nutrients distribution in the Yellow River Estuary under the influence of the Water-Sediment Regulation Scheme[J]. Haiyang Xuebao, 2016, 38(8): 36-43. doi: 10.3969/j.issn.0253-4193.2016.08.004

镭、氡同位素示踪调水调沙对黄河口水体运移及营养盐分布特征的影响

doi: 10.3969/j.issn.0253-4193.2016.08.004
基金项目: 国家自然科学基金(41576075,41206064,41376085);山东省自然科学基金(ZR2012DQ002);青岛市科技计划基础研究项目(13-1-4-224-jch)。

Using natural radium and radon isotopes trace the water transport process and nutrients distribution in the Yellow River Estuary under the influence of the Water-Sediment Regulation Scheme

  • 摘要: 为研究调水调沙影响下的镭、氡同位素和营养盐在黄河口的分布特征,于2013年7月调水调沙期间在黄河口及其邻近海域进行了多点的连续观测。研究发现:(1)黄河口海域镭、氡同位素分布呈现明显的“分区”现象,南北两区分别为“调水调沙影响非显著区域”和“调水调沙影响显著区域”,北部海域镭、氡同位素浓度高值主要来源于陆源输入(包括河流输入和海底地下水排放);(2)调查期间,北部海域水体年龄为(2.9±1.6)d,南部海域水体年龄为(5.0±2.1)d;水龄随潮汐变化表现出涨潮时水龄增大、落潮时水龄减小的波动趋势;(3)北部海域溶解无机氮(DIN)和溶解硅(DSi)含量明显高于南部海域,而溶解无机磷(DIP)在两个区域的含量相差不大。
  • 毕乃双, 杨作升, 王厚杰, 等. 黄河调水调沙期间黄河入海水沙的扩散与通量[J]. 海洋地质与第四纪地质, 2010(2):27-34. Bi Naishuang, Yang Zuosheng, Wang Houjie, et al. Characteristics of dispersal of the Yellow River water and sediment to the sea during Water-Sediment Regulation period of the Yellow River and its dynamic mechanism[J]. Marine Geology & Quaternary Geology, 2010(2):27-34.
    王玉成. 黄河调水影响下河口区盐度分布的观测与模拟研究[D]. 青岛:中国海洋大学, 2010. Wang Yucheng. Study on response of salinity distribution around the Yellow River mouth to abrupt change in river discharge with in situ observation and numerical simulation[D]. Qingdao:Ocean University of China, 2010.
    姚庆祯, 于志刚, 王婷, 等. 调水调沙对黄河下游营养盐变化规律的影响[J]. 环境科学, 2009, 30(12):3534-3540. Yao Qingzhen, Yu Zhigang, Wang Ting, et al. Effect of the first Water-Sediment Regulation on the variations of dissolved inorganic nutrients' concentrations and fluxes in the lower main channel of the Yellow River[J]. Environmental Science, 2009, 30(12):3534-3540.
    Wang H J, Yang Z S, Bi N S, et al. Rapid shifts of the river plume pathway off the Huanghe (Yellow) River mouth in response to Water-Sediment Regulation Scheme in 2005[J]. Chinese Science Bulletin, 2005, 50(24):2878-2884.
    Veeh H H, Moore W S, Smith S V. The behaviour of uranium and radium in an inverse estuary[J]. Continental Shelf Research, 1995, 15(13):1569-1583.
    Moore W S, Arnold R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research, 1996, 101(C1):1321-1329.
    Waska H, Kim S, Kim G, et al. An efficient and simple method for measuring 226Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC)[J]. Journal of Environmental Radioactivity, 2008, 99(12):1859-1862.
    Lambert M J, Burnett W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66(1/2):55-73.
    Xu B C, Xia D, Burnett W C, et al. Natural 222Rn and 220Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China[J]. Applied Geochemistry, 2014, 51:79-85.
    Schubert M, Paschke A, Lieberman E, et al. Air-water partitioning of 222Rn and its dependence on water temperature and salinity[J]. Environmental Science & Technology, 2012, 46(7):3905-3911.
    Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. New York:John Wiley & Sons, 1999.
    Xia D, Yu Z G, Xu B C, et al. Variations of hydrodynamics and submarine groundwater discharge in the Yellow River estuary under the influence of the Water-Sediment Regulation Scheme[J]. Estuaries and Coasts, 2016, 39(2):333-343.
    Li Y H, Chan L H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary[J]. Earth and Planetary Science Letters, 1979, 43(3):343-350.
    Dulaiova H, Burnett W C. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers[J]. Marine Chemistry, 2008, 109(3/4):395-408.
    Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575):612-614.
    Swarzenski P W, Reich C, Kroeger K D, et al. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida[J]. Marine Chemistry, 2007, 104(1/2):69-84.
    Charette M A, Moore W S, Burnett W C. Uranium-and thorium-series nuclides as tracers of submarine groundwater discharge[J]. Radioactivity in the Environment, 2008, 13:155-191.
    Peterson R N, Burnett W C, Taniguchi M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China[J]. Journal of Geophysical Research, 2008, 113(C9):C09021.
    Taniguchi M, Ishitobi T, Chen J Y, et al. Submarine groundwater discharge from the Yellow River delta to the Bohai Sea, China[J]. Journal of Geophysical Research, 2008, 113(C6):C06025.
    Xu B C, Burnett W, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via radium isotopes:ecological perspectives[J]. Continental Shelf Research, 2013, 66:19-28.
    Moore W S. Ages of continental shelf waters determined from 223Ra and 224Ra[J]. Journal of Geophysical Research, 2000, 105(C9):22117-22122.
    Moore W S, Krest J. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico[J]. Marine Chemistry, 2004, 86(3/4):105-119.
    孙效功, 杨作升, 陈彰榕. 现行黄河口海域泥沙冲淤的定量计算及其规律探讨[J]. 海洋学报, 1993, 15(1):129-136. Sun Xiaogong, Yang Zuosheng, Chen Zhangrong. Quantitative calculation and law discussing for sediment erosion and siltation in river mouth of Yellow River[J]. Haiyang Xuebao, 1993, 15(1):129-136.
    张向上. 黄河口碳输运过程及其对莱州湾的影响[D]. 青岛:中国海洋大学, 2007. Zhang Xiangshang. The transport of inorganic and organic carbon in the Yellow River estuary and its effect on Laizhou Bay[D]. Qingdao:Ocean University of China, 2007.
    于立霞, 简慧敏, 王兆锟, 等. 夏季辽河口各形态营养盐的河口混合行为[J]. 海洋科学, 2011, 35(12):68-74. Yu Lixia, Jian Huimin, Wang Zhaokun, et al. The mixing behavior of nutrients in summer at Liaohe Estuary[J]. Marine Sciences, 2011, 35(12):68-74.
    石晓勇, 史致丽. 黄河口磷酸盐缓冲机制的探讨Ⅲ.磷酸盐交叉缓冲图及"稳定pH范围"[J]. 海洋与湖沼, 2000, 31(4):441-447. Shi Xiaoyong, Shi Zhili. Discussion of phosphate buffer mechanism in Huanghe river estuary Ⅲ. Cross over buffer plot of phosphate and "stable pH range"[J]. Oceanologia et Limnologia Sinica, 2000, 31(4):441-447.
    张正斌, 陈镇东, 刘莲生, 等. 海洋化学原理和应用——中国近海的海洋化学[M]. 北京:海洋出版社, 1999. Zhang Zhengbin, Chen Zhendong, Liu Liansheng, et al. Principles and Applications of Marine Chemistry-China's Offshore Marine Chemistry[M]. Beijing:China Ocean Press, 1999.
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  9
  • PDF下载量:  950
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-19
  • 修回日期:  2016-02-19

目录

    /

    返回文章
    返回