留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

印度尼西亚卡利安达岛近岸热泉微生物和氢酶基因的多样性

何培青 Dewi Seswita Zilda 李江 张学雷 崔菁菁 白亚之 Gintung Patantis Ekowati Chasanah

何培青, Dewi Seswita Zilda, 李江, 张学雷, 崔菁菁, 白亚之, Gintung Patantis, Ekowati Chasanah. 印度尼西亚卡利安达岛近岸热泉微生物和氢酶基因的多样性[J]. 海洋学报, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013
引用本文: 何培青, Dewi Seswita Zilda, 李江, 张学雷, 崔菁菁, 白亚之, Gintung Patantis, Ekowati Chasanah. 印度尼西亚卡利安达岛近岸热泉微生物和氢酶基因的多样性[J]. 海洋学报, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013
He Peiqing, Dewi Seswita Zilda, Li Jiang, Zhang Xuelei, Cui Jingjing, Bai Yazhi, Gintung Patantis, Ekowati Chasanah. Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia[J]. Haiyang Xuebao, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013
Citation: He Peiqing, Dewi Seswita Zilda, Li Jiang, Zhang Xuelei, Cui Jingjing, Bai Yazhi, Gintung Patantis, Ekowati Chasanah. Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia[J]. Haiyang Xuebao, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013

印度尼西亚卡利安达岛近岸热泉微生物和氢酶基因的多样性

doi: 10.3969/j.issn.0253-4193.2016.06.013
基金项目: 中央级公益性科研院所基本科研业务费专项资金项目(2011T04);国家海洋局海洋生物活性物质与现代分析技术重点实验室开放课题(MBSMAT-2015-06,MBSMAT-2011-03,MBSMAT-2012-2)。

Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia

  • 摘要: 研究对2011年7月采自印度尼西亚卡利安达岛近岸热泉的样品,进行了细菌和古菌16S rRNA基因和细菌氢酶基因克隆文库的构建、序列测定和多样性分析。结果表明:热泉系统的细菌和古菌由16个门组成,Proteobacteria为热液流体和沉积物的优势类群,丰度分别为59.5%和73.3%,Cyanobacteria为菌苔的优势类群(丰度,56.5%);具有氨氧化作用的Crenarchaeota为古菌的优势类群。热泉系统中,70%以上的种类与海洋细菌的亲缘关系最近,说明该系统具有海洋特性;约20%的种类与陆地热泉中嗜热或中等嗜热细菌的亲缘关系最近,这些种类可能来源于高温地层内部,并参与了铁氧化还原、氢氧化、硫氧化和硝酸还原等过程。热泉系统中,NAD(P)-关联的双向NiFe-氢酶基因和FeFe-氢酶基因的组成分布也受到温度和盐度分布变化的影响。研究为揭示浅海热液系统提供理论参考。
  • Dando P R, Hughes J A, Leahy Y, et al. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc[J]. Cont Shelf Res, 1995, 15(8): 913-929.
    Hoaki T, Nishijima M, Miyashita H, et al. Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-jima Island, Kagoshima, Japan[J]. Appl Environ Microbiol, 1995, 61(5): 1931-1937.
    Tarasov V G, Gebruk A V, Mironov A N, et al. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?[J]. Chem Geol, 2005, 224(1/3): 5-39
    Maugeri T L, Lentini V, Gugliandolo C, et al. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy)[J]. Extremophiles, 2009, 13(1): 199-212.
    Zhang Yao, Zhao Zihao, Chen C T A, et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems[J]. PLoS One, 2012, 7(9): e44593.
    Tang Kai, Liu Keshao, Jiao Nianzhi, et al. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system[J]. PLoS One, 2013, 8(8): e72958.
    Lentini V, Gugliandolo C, Bunk B, et al. Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by illumina sequencing technology[J]. Curr Microbiol, 2014, 69(4): 457-466.
    Price R E, Lesniewski R, Nitzsche K S, et al. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation[J]. Front Microbiol, 2013, 4: 158.
    Hirayama H, Sunamura M, Takai K, et al. Culture-dependent and-independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi island, Japan[J]. Appl Environ Microbiol, 2007, 73(23): 7642-7656.
    Hobel C F V, Marteinsson V T, Hreggvidsson G Ó, et al. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes[J]. Appl Environ Microbiol, 2005, 71(2): 2771-2776.
    Lane D J. 16S/23S sequencing[M]//Stackbrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons, 1991: 115-176.
    DeLong E F. Archaea in coastal marine environments[J]. Proc Natl Acad Sci U S A, 1992, 89(12): 5685-5689.
    Barz M, Beimgraben C, Staller T, et al. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments[J]. PLoS One, 2010, 5(11): e13846.
    Schmidt O, Drake H L, Horn M A. Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen[J]. Appl Environ Microbiol, 2010, 76(6): 2027-2031.
    Codon Code Corporation (2011) Codon code aligner[EB/OL]. http://www.codoncode.com/aligner/.
    RIMER-E, multivariate statistics for ecologists[EB/OL]. http://www.primer-e.com/.
    Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Appl Environ Microbiol, 2005, 71(3): 1501-1506.
    Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symp Ser, 1999, 41(2): 95-98.
    Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22): 4673-4680.
    Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: molecular evolutionary genetics analysis software[J]. Bioinformatics, 2001, 17(12): 1244-1245.
    Staudigel H, Albarède F, Blichert-Toft J, et al. Geochemical Earth Reference Model (GERM): description of the initiative[J]. Chem Geol, 1998, 145(3/4): 153-159.
    Chen Ming, Yan Yongliang, Zhang Wei, et al. Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803[J]. J Bacteriol, 2011, 193(21): 6095.
    Beckwith C R, Edwards M J, Lawes M, et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth[J]. Front Microbiol, 2015, 6: 332.
    Doronina N V, Kaparullina E N, Trotsenko Y A. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring[J]. Int J Syst Evol Microbiol, 2014, 64(1): 158-164.
    Hirayama H, Takai K, Inagaki F, et al. Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer[J]. Int J Syst Evol Microbiol, 2005, 55(1): 467-472.
    Vésteinsdóttir H, Reynisdóttir D B, Örlygsson J. Hydrogenophilus islandicus sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring[J]. Int J Syst Evol Microbiol, 2011, 61(2): 290-294.
    Slobodkina G B, Reysenbach A L, Panteleeva A N, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria[J]. Int J Syst Evol Microbiol, 2012, 62(10): 2463-2468.
    Iino T, Nakagawa T, Mori K, et al. Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a terrestrial hot spring in Japan[J]. Int J Syst Evol Microbiol, 2008, 58(7): 1675-1679.
    Weidler G W, Gerbl F W, Stan-Lotter H. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps[J]. Appl Environ Microbiol, 2008, 74(19): 5934-5942.
    Vignais P M, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview[J]. Chem Rev, 2007, 107(10): 4206-4272.
    Appel J, Phunpruch S, Steinmüller K, et al. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis[J]. Arch Microbiol, 2000, 173(5/6): 333-338.
    Troshina O, Serebryakova L, Sheremetieva M, et al. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation[J]. Int J Hydr Energ, 2002, 27(11/12): 1283-1289.
    Zinger L, Amaral-Zettler L A, Fuhrman J A, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems[J]. PLoS One, 2011, 6(9): e24570.
  • 加载中
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  9
  • PDF下载量:  609
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-07

目录

    /

    返回文章
    返回