留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热液和冷泉10种无脊椎动物基因组大小测定及比较

郑平 王敏晓 李超伦 孙松

郑平, 王敏晓, 李超伦, 孙松. 热液和冷泉10种无脊椎动物基因组大小测定及比较[J]. 海洋学报, 2016, 38(6): 41-50. doi: 10.3969/j.issn.0253-4193.2016.06.005
引用本文: 郑平, 王敏晓, 李超伦, 孙松. 热液和冷泉10种无脊椎动物基因组大小测定及比较[J]. 海洋学报, 2016, 38(6): 41-50. doi: 10.3969/j.issn.0253-4193.2016.06.005
Zheng Ping, Wang Minxiao, Li Chaolun, Sun Song. Survey of genome size in 10 invertebrates from hydrothermal vent and cold seep[J]. Haiyang Xuebao, 2016, 38(6): 41-50. doi: 10.3969/j.issn.0253-4193.2016.06.005
Citation: Zheng Ping, Wang Minxiao, Li Chaolun, Sun Song. Survey of genome size in 10 invertebrates from hydrothermal vent and cold seep[J]. Haiyang Xuebao, 2016, 38(6): 41-50. doi: 10.3969/j.issn.0253-4193.2016.06.005

热液和冷泉10种无脊椎动物基因组大小测定及比较

doi: 10.3969/j.issn.0253-4193.2016.06.005
基金项目: 中国科学院创新国际团队项目(20140491526);中国科学院战略性先导科技专项(A类)资助(XDA11020305);国家基金委-山东省联合基金项目"海洋生态与环境科学"(U1406403);自然科学基金(41106133,41230963)。

Survey of genome size in 10 invertebrates from hydrothermal vent and cold seep

  • 摘要: 基因组大小(或称C值)作为生物单倍体细胞中全套染色体的DNA总量,在一定程度上是恒定的,因而C值可以作为生物物种的一个特定参数。深海热液和冷泉为更好地理解C值与不同环境之间的关系提供了一个特征性的模型。本文采用流式细胞术,测定了来自热液和冷泉环境中的10种深海无脊椎动物的C值,其分布范围从0.87 pg到12.28 pg,其中,相比于软体动物和多毛类,甲壳生物基因组大小及变异均较大。对比热液和冷泉两个群落中共有种(深海偏顶蛤Bathymodiolus platifrons、柯氏潜铠虾Shinkaia crosnieri以及长角阿尔文虾Alvinocaris longirostris)的基因组大小,发现C值差异并不显著。同时,综合已有的数据,对深海化能极端环境与其他环境条件下的物种C值进行对比分析,结果显示深海化能极端环境下生物的基因组大小并没有发现明确的变化趋势。
  • Beaulieu J M, Leitch I J, Knight C A. Genome size evolution in relation to leaf strategy and metabolic rates revisited[J]. Ann Bot, 2007, 99(3): 495-505.
    Wyngaard G A, Rasch E M, Manning N M, et al. The relationship between genome size, development rate, and body size in copepods[J]. Hydrobiologia, 2005, 532(1/3): 123-137.
    Beaulieu J M, Leitch I J, Patel S, et al. Genome size is a strong predictor of cell size and stomatal density in angiosperms[J]. New Phytol, 2008, 179(4): 975-986.
    Gregory T R. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates[J]. Blood Cells Mol Dis, 2001, 27(5): 830-843.
    Vinogradov A E. Genome size and extinction risk in vertebrates[J]. Proc Biol Sci, 2004, 271(1549): 1701-1705.
    Bottini M C J, Greizerstein E J, Aulicino M B, et al. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae)[J]. Annals of Botany, 2000, 86(3): 565-573.
    Jordan G J, Carpenter R J, Koutoulis A, et al. Environmental adaptation in stomatal size independent of the effects of genome size[J]. New Phytol, 2015, 205(2): 608-617.
    Duchoslav M, Šafářová L, Jandová M. Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum(Amaryllidaceae) on a continental scale[J]. Ann Bot, 2013, 111(3): 419-431.
    Flavell R B, Bennett M D, Smith J B, et al. Genome size and the proportion of repeated nucleotide sequence DNA in plants[J]. Biochem Genet, 1974, 12(4): 257-269.
    Knight C A, Molinari N A, Petrov D A. The large genome constraint hypothesis: evolution, ecology and phenotype[J]. Ann Bot, 2005, 95(1): 177-190.
    Bonnivard E, Catrice O, Ravaux J, et al. Survey of genome size in 28 hydrothermal vent species covering 10 families[J]. Genome, 2009, 52(6): 524-536.
    Nyholm S V, Robidart J, Girguis P R. Coupling metabolite flux to transcriptomics: insights into the molecular mechanisms underlying primary productivity by the hydrothermal vent tubeworm Ridgeia piscesae[J]. Biol Bull, 2008, 214(3): 255-265.
    Jebbar M, Franzetti B, Girard E, et al. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes[J]. Extremophiles, 2015, 19(4): 721-740.
    Marcon Y, Sahling H, Borowski C, et al. Megafaunal distribution and assessment of total methane and sulfide consumption by mussel beds at Menez Gwen hydrothermal vent, based on geo-referenced photomosaics[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2013, 75: 93-109.
    Dziak R P, Johnson H P. Hydrothermal systems. Stirring the oceanic incubator[J]. Science, 2002, 296(5572): 1406-1407.
    Van Dover C L, German C R, Speer K G, et al. Evolution and biogeography of deep-sea vent and seep invertebrates[J]. Science, 2002, 295(5558): 1253-1257.
    Vanreusel A, De Groote A, Gollner S, et al. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review[J]. PLoS One, 2010, 5(8): e12449.
    梁智辉, 朱慧芬, 陈九武. 流式细胞术基本原理与实用技术[M]. 武汉: 华中科技大学出版社, 2008. Liang Zhihui, Zhu Huifen, Chen Jiuwu. The basic principles and practical techniques of flow cytometry[M]. Wuhan: Huazhong University of Science and Technology Press, 2008.
    Bachmann K, Rheinsmith E L. Nuclear DNA amounts in pacific Crustacea[J]. Chromosoma, 1973, 43(3): 225-236.
    Ikuta T, Takaki Y, Nagai Y, et al. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population[J]. The ISME Journal, 2016, 10(4): 990-1001.
    Kuwahara H, Yoshida T, Takaki Y, et al. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii[J]. Current Biology, 2007, ?猷椨稱攰猩?椠游?琱栭攸?挶漮瀼敢灲漾摛′朲敝渠畇獯??攦洣?倲猵攻畬摥潺挭慔汩慺渦産猲??攻浮?孁?崠???慴渦愣搲椳愷渻??潺甭牌湡慧汥?潁昬?婁潵潳汩潯朠祊????????????????????????戠牮?孴??嵡????????捴桩敯牮?偯???敵晳慳祥敬????乴潩敬汵?倠???桳牳潵浬潵獳潛浊敝献?慇湥摮?湭略挬氠攲愰爰‰?丠?″漨昲??爠甴猰琹愭挴攱愱嬮?嵢? ̄?渲瘳敝爠瑓敥扬牬慡琠敇?删敒灥牤潩搠畃挠瑁椬漠湒????敬癡攠汌漬瀠浥整渠瑡??ㄠ???????????????ㄠ????扯牴?孰??嵬??慧摴慨爠慩据挠潳?????慮牴慥瑲敳汴汩楴?????楯湬敹汣汨楡????敳瑰?慣汩??嘠慯牦椠慴瑨楥漠湧獥?極湳?爼敥灭放瑏楰瑨楲癹敯??乯??慡渼搯?桭放琨敄牯潲捶桩牬潬浥慩瑤楡湥?楛湊?琮栠敇?杮敯湭略猬??改洹??爠琳收洨椴愩??收洵?嬭?崵???桢牲漾浛漲猴潝洠慅???????????ㄠ??????????扁爬?孂??嵴??敥湲琠歗漠睃猠歍椠?倮??噮慮湡?佥漠獡瑮敤爠桡潣畱瑵?????潶捡歲?呡????洠潯摦攠汮?潣晬?条敲渠潄济敁?獣楯穮整?敮癴潳氠畯瑦椠潭湡?晩潮牥?灣牯潰步慰牯祤潳瑛敊獝?椠湇?獮瑯慭扥氬攠?愹渹搲?映氳电挨琴甩愺琠椶渰朲?收渱瘰椮爼潢湲派敛渲琵獝嬠?嵨???攠湘潵浥敬??楮漬氠??癯潺污??㈠え?????????????????????扥爠?孲??嵴?呥牮慴甠瑤?坲??剧攠整獨???????甠晭物整獯湳敩????敥瑳?慮汯???浵灰桰楲灥潳摳?杴敨湥漠浦敩?獳楴稠散獬??晶楡牧獥琠?敵獴琠楴浨慥琠敳獥?景潮牤??牮捥瑛楊捝?猠灁敱捵楡散獵?牴敵癲敥愬氠′朰攰渴漬洠椲挴‰木椱愯渴琩猺嬠?崰???攱渳漮洼敢? ̄???????ぬ???????ㄠ??????扗牥?嬬??嵵??潮攠湁猠?倬??剴攠敡獬???????数汯穰極汬敡????攠瑧?慮汯???慳物杺敥?杶敡湲潩浡整獩?慮洠潩湮朠?挮愠牭楥摬敡慮湯?獡桳牴楥浲瀠孲?嵦???整湳漠浬敩??㈠とど???????????????????戠牰?孡??嵩?乩慴特摛潊湝????坯敓椠獇獥????嘠椲攰椱爴愬????攷琩?愠汥?‰嘰愴爵椲愲琮椼潢湲 ̄潛昲?瑝栠敇?杲散渦漣洲攳?猻楡稭敆?敲獮琦椣洲愲琵攻?睤楥瑺栠?攬渠癉楲物潯湮浤敯渠瑊愠汍?挠潖湡摬楬琦椣漲渳猲※楳渠??攠浥??牡潬献漠灐桬楯汩慤?洠敬汥慶湥潬朠慡獮瑤攠牧??敯浭?嬠?嵩???祯瑦漠浬敯瑣牡祬?????ちば?????????????????扦爠?孩??嵮??湣摩牬??????獣?卯??㈠???湡捬桴敩穴?卤??呡敬洠獧捲桡??????削楝挮漠????整琠?慹汳???敡湴潩浣敳?獡楮穤攠?楶湯??整浩??椬氠愲朰漱??攠洲???????猱琳改爭愱挴收愮攼???湛愲瀸桝愠汒楡敫慩散??愬渠摓?牬敪污慫琭教摡?杯敶湬敥牶愠??瀠桓祩汮潺条敲渭敓瑥楫捵??散瘠潊氬甠瑥楴漠湡慬爮礠?慯湲摰?敯捬潯汧潩杣楡捬愠污?楤洠灧汥楮捯慭瑥椠潳湩獺孥?嵶??偩污慴湩瑯?即礠獷瑩整浨慩瑮椠捰獯?慵湬摡??癯潮汳甠瑯楦漠湅???ど?????????????????????戢牊?孧??嵬?偶敩瑣牵潳瘢??????卡慮湵杬獡瑣敥牡?吩?????漠桴湨獥琠潣湥???卡??敂瑡?慫污???癥楮摩敮湳捵敬?晛潊牝??乁??汨潩獶獥?愠獯?愠?摩敯瑬敯牧浩楣湡慬渠瑓?潩晥?杣敥湳漬洠攲‰猱椴稬攠嬶?崨??区挠椷攴渳挭攷?″金?ぢひ??有???????????い?に?ㄠぅ????扆牵?孨??嵊??敁癨潡獮???????爬漠睥湴?????????攠湣湹整瑯穭敥湴???????敬湹潳浩敳?獩楮稠攼?牭放摌畡捧瑥楮潡湲?瑡栠牳潩畣来桲?楲汩污攼术楥瑭椾洨慃瑵散?牲敢捩潴浡扣楥湡慥琩椠潩湮?捩潣畡湴瑥敳爠慣捯瑲獲?杬敡湴潩浯敮?敯硦瀠慧湥獮楯潭湥?楳湩??攠海??牨愠扵楳摡潧灥猠楴獹??敳洠?孮?崠???敷湩潮浧攠?剬敥獶敡慴物捯桮????????????????ね????び????戠牅?孯??嵴?偯敮琬爠漲瘰‰??????用琱愯琲椩漺渠愹氭?改焮甼楢汲椾扛爳椰畝洠?浥潩摡敮污?潁映?本攠湃潡浵攠?猬椠穃敯?敵癣潣汩畡琠楅漬渠孥?崠??吮栠敇潥牮?偭潥瀠畳汩??椠潡汮??休ご????????????????????扴牥?孮??嵰??慩慥捳欠??????坡桰楯瑤湡敛祍??????割楡敭猠敆戠敒爬朠???????祰扥牬椠摋楬穥慩瑮椠潊渠?愮渠摃?杵敳湴潡浣敥?獮楳稠敡?敤瘠潴汨略琠楂潩湯??瑶楥浲楳湩杴?愠湃摲?浳慩杳渮椠瑌略摩敤?潮昬?湴畨捥氠敎慥牴??乲??据潤湳琺攠湋瑯?楩湮捫牬敩慪獫敥猠?楲湩??攠济??攠氱椹愹渹琺栠甹猸??改洸??格潢浲漾灛氳漱楝搠?档祌扡牲楥摮?獉瀠敁挬椠敓猦嬣?崳?※乶敩睧?偹栠祊琠潍氬???はび???ㄠ?????????????ひ? and ecological significance of genome
  • 加载中
计量
  • 文章访问数:  1225
  • HTML全文浏览量:  10
  • PDF下载量:  1117
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-24

目录

    /

    返回文章
    返回