留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数学形态学的侧扫声呐图像轮廓自动提取

罗进华 蒋锦朋 朱培民

罗进华, 蒋锦朋, 朱培民. 基于数学形态学的侧扫声呐图像轮廓自动提取[J]. 海洋学报, 2016, 38(5): 150-157. doi: 10.3969/j.issn.0253-4193.2016.05.014
引用本文: 罗进华, 蒋锦朋, 朱培民. 基于数学形态学的侧扫声呐图像轮廓自动提取[J]. 海洋学报, 2016, 38(5): 150-157. doi: 10.3969/j.issn.0253-4193.2016.05.014
Luo Jinhua, Jiang Jinpeng, Zhu Peimin. Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology[J]. Haiyang Xuebao, 2016, 38(5): 150-157. doi: 10.3969/j.issn.0253-4193.2016.05.014
Citation: Luo Jinhua, Jiang Jinpeng, Zhu Peimin. Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology[J]. Haiyang Xuebao, 2016, 38(5): 150-157. doi: 10.3969/j.issn.0253-4193.2016.05.014

基于数学形态学的侧扫声呐图像轮廓自动提取

doi: 10.3969/j.issn.0253-4193.2016.05.014
基金项目: 中海油田服务股份有限公司科研项目——AUV调查数据处理解释系统开发(E-23132019)。

Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology

  • 摘要: 侧扫声呐图像特征自动提取的难点在于特征地貌边缘检测较困难,依据图像灰度突变检测得到的边缘比较粗糙、不连续,而且有断口和小洞。本文在对图像进行预处理和阈值化的基础上,采用数学形态学方法对图像进行处理,即用具有一定形态的结构元素去量度和提取图像中的对应形状,得到连续化、粗化、圆滑的特征区域边缘填充目标内部阴影且消除背景噪声。基于数学形态学的侧扫声呐图像特征自动提取的主要步骤为:首先对侧扫声呐图像进行预处理,然后进行灰度阈值化,接着采用数学形态学方法进行处理,最后对处理后的图像进行边缘检测,提取出特征地貌边缘。实验表明,采用数学形态学方法进行处理后,错断、离散的海底目标物变得连续,背景噪声大大减少,自动提取结果准确可靠。
  • 金翔龙. 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展, 2007, 22(4): 1243-1249. Jin Xianglong. The development of research in marine geophysics and acoustic technology for submarine exploration[J]. Progress in Geophysics, 2007, 22(4):1243-1249.
    Celik T, Tjahjadi T. A novel method for sidescan sonar image segmentation[J]. IEEE Journal of Oceanic Engineering, 2011, 36(2): 186-194.
    Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision[M]. 北京:人民邮电出版社, 2003. Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision[M]. Beijing: Post & Telecom Press, 2003.
    王兴梅. 水下声呐图像目标分割方法的研究及应用[D]. 哈尔滨: 哈尔滨工程大学, 2008. Wang Xingmei. Research and application of the underwater object segmentation algorithm based on the sonar imagery[D]. Harbin: Harbin Engineering University, 2008.
    王敏, 李庆武, 程晓轩. 侧扫声纳图像的NSCT域模极大值边缘检测[J]. 计算机工程, 2011, 37(24): 207-209. Wang Min, Li Qingwu, Cheng Xiaoxuan. NSCT domain modulus maximum edge detection in side-scan sonar image[J]. Computer Engineering, 2011, 37(24): 207-209.
    郭芳侠, 梁娟, 王晅. 基于模糊推理的噪声图像边缘检测[J]. 计算机工程, 2010, 36(15): 194-195. Guo Fangxia, Liang Juan, Wang Xuan. Edge detection for noisy images based on fuzzy reasoning[J]. Computer Engineering, 2010, 36(15): 194-195.
    Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-105.
    蒋立军, 杜文萍, 许枫. 侧扫声纳回波信号的增益控制[J]. 海洋测绘, 2002, 22(3): 6-8. Jiang Lijun, Du Wenping, Xu Feng. Signal gain adjustment for side scan sonar[J]. Hydrographic Surveying and Charting, 2002, 22(3): 6-8.
    Hellequin L, Boucher J M, Lurton X. Processing of high-frequency multibeam echo sounder data for seafloor characterization[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 78-89.
    范习健, 李庆武, 黄河, 等. 侧扫声呐图像的3维块匹配降斑方法[J]. 中国图象图形学报, 2012, 17(1): 68-74. Fan Xijian, Li Qingwu, Huang He, et al. Side-scan sonar image despeckling based on block-matching and 3D filtering[J]. Journal of Image and Graphics, 2012, 17(1): 68-74.
    霍冠英, 李庆武, 王敏, 等. Curvelet 域贝叶斯估计侧扫声呐图像降斑方法[J]. 仪器仪表学报, 2011, 32(1): 170-177. Huo Guanying, Li Qingwu, Wang Min, et al. Side-scan sonar image despeckling based on Bayesian estimation in curvelet domain[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 170-177.
    Bednar J B. Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data[J]. Geophysics, 1983, 48: 1598-1610.
    Duncan G, Beresford G. Some analyses of 2-D median fk filters[J]. Geophysics, 1995, 60(4): 1157-1168.
    Ng P E, Ma K K. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Transactions on Image Processing, 2006, 15(6): 1506-1516.
    滕惠忠, 严晓明, 李胜全, 等. 侧扫声纳图像增强技术[J]. 海洋测绘, 2004, 24(2): 47-49. Teng Huizhong, Yan Xiaoming, Li Shengquan, et al. Processing techniques of enhancement for side scan sonar images[J]. Hydrographic Surveying and Charting, 2004, 24(2): 47-49.
    张济博, 潘国富, 丁维凤. 侧扫声纳图像改正研究[J]. 声学技术, 2009, 28(6):44-47. Zhang Jibo, Pan Guofu, Ding Weifeng. Research on side-scan sonar images' correction[J]. Technical Acoustics, 2009, 28(6):44-47.
    Boulinguez D, Quinquis A. 3-D underwater object recognition[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 814-829.
    李了了, 邓善熙, 丁兴号. 基于大津法的图像分块二值化算法[J]. 微计算机信息, 2005, 21(14): 76-77. Li Liaoliao, Deng Shanxi, Ding Xinghao. Binarization algorithm based on image partition derived from Da-Jing method[J]. Control & Automation, 2005, 21(14): 76-77.
    Soille P. Morphological image analysis: principles and applications[M]. New York: Springer-Verlag, 2003.
    Haralick R M, Sternberg S R, Zhuang X H. Image analysis using mathematical morphology[J]. IEEE Journal of Oceanic Engineering, 1987, 9(4): 532-550.
    袁悦锋, 朱培民, 赵娜, 等. 基于数学形态学的月海圆形撞击坑自动识别方法[J]. 中国科学: 物理学, 力学, 天文学, 2013(3): 324-332. Yuan Yuefeng, Zhu Peimin, Zhao Na, et al. Automatic identification of circular mare craters based on mathematical morphology[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013(3): 324-332.
    Serra J. Introduction to mathematical morphology[J]. Computer Vision Graphics & Image Processing, 1986, 35(3): 283-305.
    朱林. 南海北部荔湾3-1气田管道路由区灾害地质特征研究[D]. 青岛:国家海洋局第一海洋研究所, 2013. Zhu Lin. Geological hazards in the northern South China Sea Liwan 3-1 gas field pipeline route[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2013.
  • 加载中
计量
  • 文章访问数:  936
  • HTML全文浏览量:  24
  • PDF下载量:  948
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12

目录

    /

    返回文章
    返回