留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极中山站夏季下降风数值模拟个例研究

孙启振 张林 张占海 杨清华

孙启振, 张林, 张占海, 杨清华. 南极中山站夏季下降风数值模拟个例研究[J]. 海洋学报, 2016, 38(3): 71-81. doi: 10.3969/j.issn.0253-4193.2016.03.007
引用本文: 孙启振, 张林, 张占海, 杨清华. 南极中山站夏季下降风数值模拟个例研究[J]. 海洋学报, 2016, 38(3): 71-81. doi: 10.3969/j.issn.0253-4193.2016.03.007
Sun Qizhen, Zhang Lin, Zhang Zhanhai, Yang Qinghua. Numerical simulation of summer katabatic wind at Zhongshan Station,Antarctica: A case study[J]. Haiyang Xuebao, 2016, 38(3): 71-81. doi: 10.3969/j.issn.0253-4193.2016.03.007
Citation: Sun Qizhen, Zhang Lin, Zhang Zhanhai, Yang Qinghua. Numerical simulation of summer katabatic wind at Zhongshan Station,Antarctica: A case study[J]. Haiyang Xuebao, 2016, 38(3): 71-81. doi: 10.3969/j.issn.0253-4193.2016.03.007

南极中山站夏季下降风数值模拟个例研究

doi: 10.3969/j.issn.0253-4193.2016.03.007
基金项目: 国家自然科学基金(41206185,41076128);南北极环境资源调查专项(CHINARE-2015);国家海洋局极地考察办公室对外合作项目(IC201312)资助。

Numerical simulation of summer katabatic wind at Zhongshan Station,Antarctica: A case study

  • 摘要: 南极内陆地面辐射冷却产生的近表层冷空气,沿高原斜坡向下流动而形成下降风,其分布形态决定了南极大陆近表层风场的主要特征。我国南极中山站全年均受下降风的强烈影响。夏季晴天时,中山站的下降风一般在傍晚开始出现,风速在午夜达到极值,在次日中午之前逐渐减弱,风速有显著的日循环特征。本文选取南极中山站2010年1月的夏季下降风个例,使用常规地面气象观测资料和Polar WRF极地大气数值模式进行了分析研究。结果表明:中山站夏季夜间晴天出现偏东向的下降风时,近地面风速变化趋势与地面气温呈负相关,相关系数为-0.91。数值模拟发现,中山站下降风在距地面高度约100~150 m之间时风速最大,约为15~21 m/s。在下降风发生时,近地层大气存在逆温现象。下降风较强时,近地层逆温也较强,逆温层厚度约为200~300 m,逆温强度约为4~6℃。在地面摩擦的作用下,中山站近地面下降风风向为东南,随着高度的增加,风向逆时针偏转,最终趋于与地形等高线平行。没有太阳直接辐射时,南极大陆地区存在持续的逆温层,逆温层的出现加强了下降风气流,随着逆温的增强,大风区逐渐西移,且面积不断增加。在夏季太阳辐射造成的逆温消失的短暂时间内,逆温时产生的下降风尚不能完全消失,由此形成了较稳定的风向空间分布特征。
  • King J C,Turner J. Antarctic Meteorology and Climatology[M]. Cambridge:Cambridge University Press,1997:409.
    Parish T R,David H B. Continental-scale simulation of the Antarctic katabatic wind regime[J]. Journal of Climate,1991,4(2):135-146.
    Renfrew I A,Anderson P S. Profiles of katabatic flow in summer and winter over Coats Land,Antarctica[J]. Q J R Meteorol Soc,2006,132(616A):779-802.
    Parish T R,David H B. The surface windfield over the Antarctic ice sheets[J]. Nature,1987,328(6125):51-54.
    Ball F K. Winds on the ice slopes of Antarctica[C]//Antarctic Meteorology,Proceedings of the Symposium. Oxford:Pergamon Press,1960:9-16
    Parish T R,David H B. Reexamination of the near-surface airflow over the Antarctic Continent and implications on atmospheric circulations at high southern latitudes[J]. Monthly Weather Review,2007,135(5):1961-1973.
    Grisogono B,Axelsen S L. A Note on the Pure Katabatic Wind Maximum over Gentle Slopes[J]. Boundary-Layer Meteorol,2012,145(3):527-538.
    Kouznetsov P,Palo T T,Vihma T. Evidence of very shallow summertime katabatic flows in dronning maud land,Antarctica[J]. J Appl Meteorol Climatol,2013,52(1):164-168.
    杨清华,张林,李春花,等. 南极中山站气象要素变化特征分析[J]. 海洋通报,2010,29(6):1-7. Yang Qinghua,Zhang Lin,Li Chunhua,et al. Analysis on the variation tendencies of meteorological elements at Zhongshan Station,Antarctica[J]. Marine Science Bulletin,2010,29(6):1-7.
    许淙,万军,吕非. 2002-2003年南极中山站地区风要素变化特征[J].海洋预报,2004,21(4):28-34. Xu Zong,Wan Jun,Lv Fei. Analysis of wind in Chinese Antarctic Zhongshan Station[J]. Marine Forecasts,2004,21(4):28-34.
    Streten N A. Some observations of Antarctic katabatic winds[J]. Aust Meteor Mag,1963,42:1-23.
    Van den Broeke M R,Van Lipzig N P M. Factors controlling the near-surface wind field in Antarctica[J]. Monthly Weather Review,2003,131:733-743.
    Vihma T,Tuovinen E,Savijarvi H. Interaction of katabatic winds and near-surface temperatures in the Antarctic[J]. Journal of Geophysical Research,2011,116(D21):1-14.
    Hines K M,Bromwich D H. Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I:Greenland Ice Sheet meteorology[J]. Monthly Weather Review,2008,136(6):1971-1989.
    Bromwich D H,Hines K M,Bai L-S. Development and testing of Polar Weather Research and Forecasting Model:2. Arctic Ocean[J]. Journal of Geophysical Research:Atmospheres,2009,114:D08122.
    Hines K M,Bromwich D H,Bai L S,et al. Development and testing of Polar WRF. Part Ⅲ. Arctic land[J]. J Climate,2011,24:26-48.
    Steinhoff D F,Bromwich D H,Monaghan A J. Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF[J]. Q J R Meteorol Soc,2013,139(675):1615-1631.
    Steinhoff D F,Bromwich D H,Speirs J C,et al. Austral summer Foehn winds over the McMurdo Dry Valleys of Antarctica from Polar WRF[J]. Q J R Meteorol Soc,2014,140(683):1825-1837.
    Guo Z,Bromwich D H,Cassano J J. Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation[J]. Monthly Weather Review,2003,131(2):384-411.
    Phillpot H R,Zillman J W. The surface temperature inversion over the Antarctic Continent[J]. Journal of Geophysical Research,1970,75(21):4161-4169.
    Argentini S,Mastrantonio G,Viola A,et al. Sodar performance and preliminary results after one year of measurements at Adelie Land coast,east Antarctica[J]. Bound-Layer Meteor,1996,81(1):75-103.
    Monti P,Fernando H J S,Princevac M,et al. Observations of flow and turbulence in the Nocturnal Boundary Layer over a slope[J]. Journal of the Atmospheric Sciences,2002,59(17):2513-2534.
    Barry R G. Mountain Weather and Climate[M]. Cambridge:Cambridge University Press,2008:506.
    Stephen R H,Richard E B. A look at the surface-based temperature inversion on the Antarctic Plateau[J]. J Climate,2005,18(11):1673-1696.
    Dalrymple P C. A physical climatology of the Antarctic Plateau. Studies in Antarctic Meteorology[J]. Antarctic Research Series,1966,9:195-231.
    Lettau H H,Schwerdtfeger W. Dynamics of the surface-wind regime over the interior of Antarctica[J]. Antarct J U S, 1967,2:155-158.
  • 加载中
计量
  • 文章访问数:  1335
  • HTML全文浏览量:  16
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09
  • 修回日期:  2015-06-10

目录

    /

    返回文章
    返回