留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于合成孔径雷达遥感的北极海冰总形变率分析

谢涛 方贺 赵尚卓 于文金 王召民 何宜军

谢涛, 方贺, 赵尚卓, 于文金, 王召民, 何宜军. 基于合成孔径雷达遥感的北极海冰总形变率分析[J]. 海洋学报, 2015, 37(11): 118-126. doi: 10.3969/j.issn.0253-4193.2015.11.011
引用本文: 谢涛, 方贺, 赵尚卓, 于文金, 王召民, 何宜军. 基于合成孔径雷达遥感的北极海冰总形变率分析[J]. 海洋学报, 2015, 37(11): 118-126. doi: 10.3969/j.issn.0253-4193.2015.11.011
Xie Tao, Fang He, Zhao Shangzhuo, Yu Wenjin, Wang Zhaomin, He Yijun. Analysis of the Arctic sea ice total deformation rates based on SAR remote sensing[J]. Haiyang Xuebao, 2015, 37(11): 118-126. doi: 10.3969/j.issn.0253-4193.2015.11.011
Citation: Xie Tao, Fang He, Zhao Shangzhuo, Yu Wenjin, Wang Zhaomin, He Yijun. Analysis of the Arctic sea ice total deformation rates based on SAR remote sensing[J]. Haiyang Xuebao, 2015, 37(11): 118-126. doi: 10.3969/j.issn.0253-4193.2015.11.011

基于合成孔径雷达遥感的北极海冰总形变率分析

doi: 10.3969/j.issn.0253-4193.2015.11.011
基金项目: 国家973计划项目(2015CB953901);国家自然科学基金(41276187);江苏省高层次创新创业人才(双创团队)引进计划专项;中法海洋卫星(CFOSAT)项目。

Analysis of the Arctic sea ice total deformation rates based on SAR remote sensing

  • 摘要: 基于RADARSAT地球物理处理器系统(RGPS)的北极海冰运动散度、旋度和剪切产品,本文计算了北极海冰总形变率,给出了所有RGPS产品时空覆盖范围的总形变率空间分布和时间平均总形变率大于0.01 d-1的概率分布。结果表明:对整个RGPS数据库而言(时间跨度从1996年11月至2008年4月),平均总形变率为0.020 4 d-1,总形变率大于0.01 d-1的数据样本为总样本的45.89%。总形变率高值主要分布在近岸海域,靠近北极点附近的总形变率相对较小。北极海冰总形变率随季节变化,夏季平均总形变率及总形变率大于0.01 d-1发生概率要比冬季大,其中,夏季总形变率大于0.01 d-1发生概率为59%,而冬季要比夏季低18%。其可能机制主要是,夏季北极地区温度升高,形成海冰融化-破碎-更易融化-更易破碎的放大效果,导致北极海冰总形变率变大。
  • Cohen J L, Furtado J C, Barlow M A, et al. Arctic warming, increasing snow cover and widespread boreal winter cooling[J]. Environmental Research Letters, 2012, 7(1):14007-14014.
    Francis J A, Vavrus S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6):L06801.
    Gao Y, Sun J, Li F, et al. Arctic sea ice and Eurasian climate: A review[J]. Advances in Atmospheric Sciences, 2015, 32(1):92-114.
    Huntingford C, Jones P D, Livina V N. No increase in global temperature variability despite changing regional patterns[J]. Nature, 2013, 500(7462):327-330.
    Curry J A, Horton R M, Liu J, et al. Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences, 2012, 109(11):4074-4079.
    Magnusdottir P. Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea Ice decline: a numerical study with CAM5[J]. Journal of Climate, 2014, 27(1):244-264.
    Rahmstorf S, Coumou D. Increase of extreme events in a warming world[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(44):17905-17909.
    Tang Q, Zhang X, Yang X, et al. Cold winter extremes in northern continents linked to Arctic sea ice loss[J]. Environmental Research Letters, 2013, 8(1):1880-1885.
    Holland M M, Bitz C M. Polar amplification of climate change in coupled models[J]. Climate Dynamics, 2003, 21(3/4):221-232.
    Overland J E, Wood K R, Wang M. Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea[J]. Polar Research, 2011, 30(4):157-171.
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293):1334-1337.
    Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters, 2013, 40(5):959-964.
    ScreenJ A. Arctic amplification decreases temperature variance in northern mid-to high-latitudes[J]. Nature Climate Change, 2014, 4(7):577-582.
    Rampal P, Weiss J, Marsan D, et al. Scaling properties of sea ice deformation from buoy dispersion analysis[J]. Journal of Geophysical Research Oceans, 2008, 113(C03002):1-12.
    Rampal P, Weiss J, Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007[J]. American Geophysical Union, 2008, 114(C5):1289-1301.
    Rampal P, Weiss J, Marsan D, et al. Arctic sea ice velocity field: General circulation andturbulent-like fluctuations[J]. Journal of Geophysical Research Oceans, 2009, 114(C10):2240-2256.
    Olason E, Notz D. Drivers of variability in Arctic sea-ice drift speed[J]. Journal of Geophysical Research Oceans, 2014, 119(9):5755-5775.
    Babb D G, Galley R J, Asplin M G, et al. Multiyear sea ice export through the Bering Strait during winter 2011-2012[J]. Journal of Geophysical Research Oceans, 2013, 118(10):5489-5503.
    Lukovich J V, Babb D G, Barber D G. On the scaling laws derived from ice beacon trajectories in the southern Beaufort Sea during the International Polar Year——Circumpolar Flaw Lead study, 2007-2008[J]. Journal of Geophysical Research Oceans, 2011, 116(C11):476-487.
    Lukovich J V, Bélanger C, Barber D G, et al. On coherent ice drift features in the southern Beaufort sea[J]. Deep Sea Research Part I Oceanographic Research Papers, 2014, 92(10):56-74.
    Giles A B, Massom R A, Heil G, et al. Semi-automated feature-tracking of East Antarctic sea ice from Envisat ASAR imagery[J]. Remote sensing of Environment, 2011(9):2267-2276.
    Kwok R F, Cunningham G. Seasonal ice area and volume production of the Arctic Ocean: November 1996 through April 1997[J]. Journal of Geophysical Research Oceans, 2002, 107(C10):12-1-12-17.
    Lindsay W, Stern R H L. The RADARSAT geophysical processor system: quality of sea ice trajectory and deformation estimates[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(9):1333-1347.
    Laine V, Laine V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981-2000, from AVHRR Polar Pathfinder data[J]. Remote Sensing of Environment, 2008, 112(3):646-667.
    Howell S E L, Wohlleben T, Dabboor M, et al. Recent changes in the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago[J]. Journal of Geophysical Research:Oceans, 2013, 118(7):3595-3607.
    Wohlleben T, Howell S E L, Komarov T A A. Sea-ice motion and flux within the Prince Gustaf Adolf Sea, Queen Elizabeth Islands, Canada during 2010[J]. Atmosphere Ocean, 2012, 51(1):1-17.
    Yu J, Liu A K, Yang Y, et al. Analysis of sea ice motion and deformation using AMSR-E data from 2005 to 2007[J]. International Journal of Remote Sensing, 2013, 34(12):4127-4141.
    Dabboor M, Geldsetzer T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery[J]. Remote Sensing of Environment, 2014, 140(1):189-195.
    Hutchings J K, Heil P, Steer A, et al. Subsynoptic scale spatial variability of sea ice deformation in the western Weddell Sea during early summer[J]. Journal of Geophysical Research:Oceans, 2012, 117(C01002): 1-16.
    Stern H L, Lindsay R W. Spatial scaling of Arctic sea ice deformation[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10017): 1-10.
    Herman A, Glowacki O. Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing[J]. The Crosphere, 2012, 6: 1553-1559.
    Kwok R., Cunningham G F, Nguyen D. Alaska SAR Facility RADARSAT Geographysical Processor System[S]. JPL D-13448, NASA, 2000.
    Kwok R, Cunningham G F.RADARSAT Geographysical Processor System.Data user's handbook (version 2)[S].JPL D-19149, NASA, 2014.
    Yu Y. On the maximal correlation coefficient[J]. Statistics & Probability Letters, 2008, 78(9):1072-1075.
    Papadatos N, Xifara T. A simple method for obtaining the maximal correlation coefficient and related characterizations[J]. Journal of Multivariate Analysis, 2013, 118(5):102-114.
    Stern H, Lindsay R, Marsan D. Scale dependence and localization of the deformation of Arctic sea ice[J]. Physical Review Letters, 2004, 93(17):178501.
    Girard L, Weiss J M, Molines J, et al. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation[J]. J Geophys Res, 2009, 114(C8):281-325.
  • 加载中
计量
  • 文章访问数:  2590
  • HTML全文浏览量:  6
  • PDF下载量:  1120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15

目录

    /

    返回文章
    返回