留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北极夏季大气垂直结构与空间分布特征

陈志昆 李志强 丁明虎

陈志昆, 李志强, 丁明虎. 北极夏季大气垂直结构与空间分布特征[J]. 海洋学报, 2015, 37(11): 68-78. doi: 10.3969/j.issn.0253-4193.2015.11.007
引用本文: 陈志昆, 李志强, 丁明虎. 北极夏季大气垂直结构与空间分布特征[J]. 海洋学报, 2015, 37(11): 68-78. doi: 10.3969/j.issn.0253-4193.2015.11.007
Chen Zhikun, Li Zhiqiang, Ding Minghu. Study of atmospheric vertical structure and distribution characteristics over Arctic region in summer[J]. Haiyang Xuebao, 2015, 37(11): 68-78. doi: 10.3969/j.issn.0253-4193.2015.11.007
Citation: Chen Zhikun, Li Zhiqiang, Ding Minghu. Study of atmospheric vertical structure and distribution characteristics over Arctic region in summer[J]. Haiyang Xuebao, 2015, 37(11): 68-78. doi: 10.3969/j.issn.0253-4193.2015.11.007

北极夏季大气垂直结构与空间分布特征

doi: 10.3969/j.issn.0253-4193.2015.11.007
基金项目: 北冰洋物理海洋与气象环境变化评价项目(CHINARE2014-04-03);科技部973项目(2013CBA01804);青年基金(41206179)。

Study of atmospheric vertical structure and distribution characteristics over Arctic region in summer

  • 摘要: 低层大气垂直物理剖面是研究大气边界层过程、模拟大气环流过程和进行天气预报的关键参数,海洋特别是北冰洋地区是气象实测资料的稀疏区甚至是空白区。因此,中国第6次北极科学考察期间(2014年7月21日至9月11日),我们使用GPS低空探空系统,对北极地区的大气垂直结构和边界层特征进行了观测实验。实地观测结果表明:(1)递减率对流层顶(LRT)和冷点对流层顶(CPT)均能准确的判断该地区对流层顶的高度和温度,NCEP再分析资料在较低纬度能够很好的反应对流层顶变化特征,但是在海冰密集的北极地区(海冰密集度达9成以上)则相对较差,所以很有必要在该区域开展探空观测研究。(2)在高空存在一个明显的低温区和高空急流,低温区和高空急流中心区的海拔高度与对流层顶高度一致;在晴天和少云天气,对流层顶高度变化不大;在多云和阴雨天气,随着纬度的升高对流层顶高度逐渐降低。在晴天和少云天气相比多云和阴雨天气,高空急流区的强度较弱,垂直和水平均范围较小。(3)CPT和高空急流的高度随着纬度有降低的趋势,75°N以北的区域降低显著;对流层垂直温度递减率随着纬度呈现出逐渐增大的趋势。(4)观测期间,在海拔3 km以下均存在多个逆温层。其中风速切变在逆温层的消失或者减弱过程中起着重要作用,而在80°N以北区域,对流层顶逆温(TIL)明显小于其他区域。表明极点附近对流层与平流层之间的物质和能量交换相比其他区域更加强盛。
  • IPCC1 Scientific Assessment. Climate Change[R]. New York: Cambridge University Press, 1990: 3641.
    Bryank H. A diagnostic ice-ocean model[J]. J Phys Ocean Ogr, 1987, 17(9): 9879-10151.
    WMO/UNEP. Climate change, the IPCC scientific assessment[R]. New York: Cambridge University Press, 1991.
    Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Rev Geophys, 1995, 33(4):403-439.
    Randel W J, Wu F, Forster P. The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism[J]. J Atmos Sci, 2007, 64: 4489-4496.
    Reid G C, Gage K S. The tropical tropopause over the western Pacific: Wave driving, convection and the annual cycle[J]. J Geophys Res, 1996, 101(D16): 233-241.
    Reid G C. Seasonal and interannual temperature variations in the tropical stratosphere[J]. J Geophys Res, 1994, 99(D9): 923-932.
    Hoinka K P. Statistics of the global tropopause pressure[J]. Mon Weather Rev, 1998, 126: 3303-3325.
    Wang K Y, Lin S C. First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/COSMIC constellation[J]. Geophys Res Lett, 2007, 34: 12805.
    Connolley V M. The antarctic temperature inversion[J]. International Journal of Climatology, 1996, 16:1333-1342.
    蔡福, 李辑, 明慧青, 等. 沈阳地区对流层顶气候特征分析[J].气象与环境学报, 2006, 22(1):11-16. Cai Fu, Li Ji, Ming Huiqing, et al.Climatic characteristics of tropopause over shenyang[J]. Journal of Meteorologu and Environment, 2006, 22(1): 11-16.
    Reid, G C, Gage K S. Interannual variation in the height of the tropical tropopauses[J]. J Geophys Res, 1985, 90(D3):5629-5635.
    马永锋, 卞林根, 周秀骥, 等. 北冰洋80°~85°N浮冰区对流层大气的垂直结构[J].海洋学报, 2011, 33(2): 48-59. Ma Yongfeng, Bian Lingen, Zhou Xiuji, et al. Vertical stucture of troposphere in the floating ice zone over the Arctic Ocean[J]. Haiyang Xuebao, 2011, 33(2):48-59.
    陈立奇.北极海洋环境与海气相互作用研究[M] .北京:海洋出版社, 2003:3391. Chen Liqi. Study of the Arctic Ocean Environment and Air-sea Interaction[M]. Beijing:China Ocean Press, 2003:3391.
    Bridgman H A, Schnell R C, Kahl J D, et al. A major event near Point Barrow, Alaska: Analysis of probable source regions and transport pathways[J]. Atmos Environ, 1989, 23: 2537-2549.
    中国气象局气象探测中心.中国气象局常规高空气象探测规范[S].北京:气象出版社, 2003:271. CMA Meteorological Observation Centre. Standard for conventional high altitude meteorological sounding of CMA[S].Beijing:China Meteorological Press, 2003:271.
    WMO. Definition of the tropopause[J].WMO Bull, 1957, 6:136.
    Seidel D J, Ross R J, Angell J K. Climatological characteristics of the tropical tropopause as revealed by radiosondes[J]. J Geophys Res, 2001, 106(D8): 7857-7878.
    盛裴轩, 毛节泰, 李建国, 等.大气物理学[M].北京:北京大学出版社, 2006, 22(1):11-16. Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric Physics[M]. Beijing: Peking University Press, 2006, 22(1):11-16.
    卞林根, 陆龙骅, 高志球, 等.北冰洋海冰上的能量分量的估算[J]. 自然科学进展, 2001, 11(5):492-498. Bian Lingen, Lu Longhua, Gao Zhiqiu, et al. Estimation of energy on the Arctic ice sheet[J]. Progress in Natural Science, 2001, 11(5):492-498.
    卞林根, 高志球, 陆龙骅, 等.北冰洋夏季开阔洋面和浮冰近地层热量平衡参数的观测估算[J]. 中国科学: D辑, 2003, 33(2):139-147. Bian Lingen, Gao Zhiqiu, Lu Longhua, et al. Estimation of heat balance parameters over the Arctic Ocean in summer[J].Science in China(Series D), 2003, 33 (2):139-147.
    张海生.中国第三次北极科学考察报告[R].北京:海洋出版社, 2009:225. Zhang Haisheng.Report of the 3rd Chinese Arctic scientific expedition[R]. Beijing: China Ocean Press, 2009:225.
    Wyagard J C, Lemone M A.Behavior of the refractive index structure parameter in the entraining convective boundary layer[J]. J Atmos Sci, 1980, 37:1573-1585.
    Sullivan P P, Moeng C H , Stevens B, et al. Structure of the entrainment zone capping the convective atmospheric boundary layer[J]. J Atmos Sci, 1998, 55:3042-3064.
    武丰民, 何金海, 祁莉, 等.海冰消融背景下北极增温的季节差异机器原因探究[J].海洋学报, 2014, 36(3):39-47. Wu Fengmin, He Jinhai, Qi Li, et al. The seasonal difference of Arctic warming and it's mechanism under sea ice cover diminishing[J]. Haiyang Xuebao, 2014, 36(3):39-47.
  • 加载中
计量
  • 文章访问数:  1292
  • HTML全文浏览量:  28
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18

目录

    /

    返回文章
    返回