留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水酸化对中华哲水蚤全蛋白表达的影响

张达娟 郭东晖 王桂忠 李少菁

张达娟, 郭东晖, 王桂忠, 李少菁. 海水酸化对中华哲水蚤全蛋白表达的影响[J]. 海洋学报, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010
引用本文: 张达娟, 郭东晖, 王桂忠, 李少菁. 海水酸化对中华哲水蚤全蛋白表达的影响[J]. 海洋学报, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010
Zhang Dajuan, Guo Donghui, Wang Guizhong, Li Shaojing. Proteomic study of the effects of acidified seawater on Calanus sinicus[J]. Haiyang Xuebao, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010
Citation: Zhang Dajuan, Guo Donghui, Wang Guizhong, Li Shaojing. Proteomic study of the effects of acidified seawater on Calanus sinicus[J]. Haiyang Xuebao, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010

海水酸化对中华哲水蚤全蛋白表达的影响

doi: 10.3969/j.issn.0253-4193.2015.06.010
基金项目: 国家自然科学基金"不同生态类型的海洋桡足类对硅藻的利用与适应的生态遗传学研究"面上项目(41276132)。

Proteomic study of the effects of acidified seawater on Calanus sinicus

  • 摘要: 运用蛋白质组学相关技术对暴露于酸化海水中的中华哲水蚤全蛋白进行分析,结果表明,对照组、CCO2 0.08%和CCO2 0.20%处理组中华哲水蚤的双向电泳图谱上可以分别分辨出1 191、1 117和946个蛋白点,选取其中43个差异蛋白进行MALDI-TOF/TOF质谱鉴定,成功鉴定出23个差异蛋白,这些蛋白主要与蛋白合成和分解、能量代谢、DNA分子修复以及解毒过程有关。
  • Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
    IPCC. A contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the third assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2001.
    Royal Society. Ocean acidification due to increasing atmospheric carbon dioxide[M]. London: The Royal Society, 2005: 60.
    Clark D, Lamare M, Barker M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species[J]. Marine Biology, 2009, 156(6): 1125-1137.
    Zippay M L, Hofmann G E. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens)[J]. Journal of Shellfish Research, 2010, 29(2): 429-439.
    Bradassi F, Cumani F, Bressan G, et al. Early reproductive stages in the crustose coralline alga phymatolithon lenormandii are strongly affected by mild ocean acidification[J]. Marine Biology, 2013, 160(8): 2261-2269.
    Wall C B, Fan T Y, Edmunds P J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum[J]. Coral Reefs, 2014, 33(1): 119-130.
    Kurihara H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates[J]. Marine Ecology Progress Series, 2008, 373: 275-284.
    Kurihara H, Ishimatsu A. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations[J]. Marine Pollution Bulletin, 2008, 56(6): 1086-1090.
    Zhang D J, Li S J, Wang G Z, et al. Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods[J]. Acta Oceanologica Sinica, 2011, 30(6): 86-94.
    Zhang D J, Li S J, Wang G Z, et al. Biochemical responses of the copepod Centropages tenuiremis to CO2-driven acidified seawater[J]. Water Science & Technology, 2012, 65(1): 30-37.
    张达娟, 李少菁, 王桂忠, 等. 二氧化碳酸化对两种桡足类肌肉和卵母细胞超微结构的影响[J]. 海洋学报, 2012, 34(3): 127-133. Zhang Dajuan, Li Shaojing, Wang Guizhong, et al. Impacts of CO2-driven acidified seawater on the muscle and oocyte ultrastructure of two marine copepods[J]. Haiyang Xuebao, 2012, 34(3): 127-133.
    Wang D Z, Lin L, Chan L L, et al. Comparative studies of four protein preparation methods for proteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis[J]. Harmful Algae, 2009, 8(5): 685-691.
    Redpath N T, Foulstone E J, Proud C G. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway[J]. EMBO Journal, 1996, 15(9): 2291-2297.
    Seibel B A, Walsh P J. Potential impacts of CO2 injection on deep-sea biota[J]. Science, 2001, 294(5541): 319-320.
    Seibel B A, Walsh P J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance[J]. The Journal of Experimental Biology, 2003, 206(4): 641-650.
    Fabry V J. Ocean science: marine calcifiers in a high-CO2 ocean[J]. Science, 2008, 320(5879): 1020-1022.
    Hurley J H, Dean A M, Koshland D E, et al. Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes[J]. Biochemistry, 1991, 30(35): 8671-8678.
    朱国萍, 黄恩启, 赵禙军. NADP-异柠檬酸脱氢酶的结构与功能[J]. 安徽师范大学学报: 自然科学版, 2007, 30(3): 366-371. Zhu Guoping, Huang Enqi, Zhao Beijun. Structure and function of NADP-Isocitrate dehydrogenase[J]. Journal of Anhui Normal University: Natural Science, 2007, 30(3): 366-371.
    Hauton C, Tyrrell T, Williams J. The subtle effects of sea water acidification on the amphipod Gammarus locusta[J]. Biogeoscience, 2009, 6: 1479-1489.
    Chen Z J, Kastaniotis A J, Miinalainen I J, et al. 17β-Hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS[J]. The FASEB Journal, 2009, 23(11): 3682-3691.
    Todgham A E, Hofmann G E. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification[J]. The Journal of Experimental Biology, 2009, 212(16): 2579-2594.
    Tomkinson A E, Vijayakumar S, Pascal J M, et al. DNA ligases: structure, reaction mechanism, and function[J]. Chemical Reviews, 2006, 106(2): 687-699.
    Bibby R, Widdicombe S, Parry H, et al. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis[J]. Aquatic Biology, 2008, 2(1): 67-74.
    Burgents J E, Burnett K G, Burnett L E. Effects of Hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the pacific white shrimp[J]. Biological Bulletin, 2005, 208(3): 159-168.
  • 加载中
计量
  • 文章访问数:  1208
  • HTML全文浏览量:  6
  • PDF下载量:  1131
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-23

目录

    /

    返回文章
    返回