留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存

王金鹏 姚鹏 孟佳 赵彬 潘慧慧 张婷婷 李栋

王金鹏, 姚鹏, 孟佳, 赵彬, 潘慧慧, 张婷婷, 李栋. 基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(6): 41-57. doi: 10.3969/j.issn.0253-4193.2015.06.005
引用本文: 王金鹏, 姚鹏, 孟佳, 赵彬, 潘慧慧, 张婷婷, 李栋. 基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(6): 41-57. doi: 10.3969/j.issn.0253-4193.2015.06.005
Wang Jinpeng, Yao Peng, Meng Jia, Zhao Bin, Pan Huihui, Zhang Tingting, Li Dong. Sources,distribution,and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Haiyang Xuebao, 2015, 37(6): 41-57. doi: 10.3969/j.issn.0253-4193.2015.06.005
Citation: Wang Jinpeng, Yao Peng, Meng Jia, Zhao Bin, Pan Huihui, Zhang Tingting, Li Dong. Sources,distribution,and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Haiyang Xuebao, 2015, 37(6): 41-57. doi: 10.3969/j.issn.0253-4193.2015.06.005

基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存

doi: 10.3969/j.issn.0253-4193.2015.06.005
基金项目: 国家自然科学基金面上项目"不同来源有机碳在长江口-东海内陆架的水动力分选研究"(41176063)。

Sources,distribution,and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation

  • 摘要: 从分级的角度认识大河三角洲前缘河口沉积有机碳的来源、分布和保存对深刻理解全球碳循环具有重要意义。于2012年6月采集了长江口和浙闽沿岸共6个站位的表层沉积物样品,采用水淘选的方法按照颗粒物水动力直径大小对其进行分级分离,分析了这些分级样品的有机碳含量、稳定同位素、比表面积以及木质素等参数,并且结合蒙特卡洛模拟的三端元混合模型,讨论了此区域不同粒级沉积有机碳的来源、分布和保存特点。结果表明,长江口表层沉积物的有机碳在小粒级中含量较高,如8~16 μm粒级有机碳含量的均值为1.30%,而32~63 μm粒级的均值为0.90%,但是大粒级有机碳对沉积物有机碳的贡献最高(81.3%),这是因为大粒级的质量贡献占绝对优势(72.0%)。三端元混合模型的计算结果表明,长江口表层沉积物中沉积有机碳的贡献以海洋来源为主(平均为73%),土壤和维管植物也有一定贡献(平均值分别为21%和6%)。在小粒级(8~16 μm)中,土壤对于沉积有机碳的贡献显著高于其他粒级,这是由于土壤有机质比较容易富集在细颗粒上。木质素的参数,如C/V(0.04~0.32)和S/V(0.33~1.23),显示长江口表层沉积物主要来源于草本和木本被子植物的混合,随着粒级的增大,草本被子植物的来源逐渐增多。浙闽沿岸分级沉积物的OC/SSA < 0.4 mg/m2,而长江口的站位中OC/SSA > 0.4 mg/m2,表明长江口沉积有机碳的保存效率比浙闽沿岸的高。木质素降解参数,如(Ad/Al)v、3,5-Bd/V和P/(S+V)随着粒级的增大逐渐降低,表明小粒级降解程度较高,而大粒级中降解程度较低。
  • Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085-8092.
    姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报, 2014, 36(2): 23-32. Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.
    Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: A sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17/18): 2241-2259.
    Bianchi T S, Mitra S, McKee B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin[J]. Marine Chemistry, 2002, 77(2/3): 211-223.
    Bianchi T S, Galler J J, Allison M A. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1/2): 211-222.
    Wakeham S G, Canuel E A, Lerberg E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J]. Marine Chemistry, 2009, 115(3/4): 211-225.
    Hu L M, Shi X F, Yu Z G, et al. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry, 2012, 142/144: 29-40.
    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1): 154-160. Yao Peng, Yu Zhigang, Guo Zhigang. Research progress in transport, Burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 154-160.
    Lamb H. Hydrodynamics[M]. 6th ed. New York: Cambridge University Press, 1994.
    章伟艳, 金海燕, 张富元, 等. 长江口-杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11): 1202-1209. Zhang Weiyang, Jin Haiyang, Zhang Fuyuan, et al. Organic carbon distribution in the Yangtze River Estuary-Hangzhou Bay and its adjacent sea area[J]. Advances in Earth Science, 2009, 24(11): 1202-1209.
    Dickens A F, Baldock J A, Smernik R J, et al. Solid-state 13C NMR analysis of size and density fractions of marine sediments: insight into organic carbon sources and preservation mechanisms[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 666-686.
    Schreiner K M, Bianchi T S, Eglinton T I, et al. Sources of terrigenous inputs to surface sediments of the Colville River Delta and Simpson's Lagoon, Beaufort Sea, Alaska[J]. Journal of Geophysical Research, 2013, 118(2): 808-824.
    Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879-893.
    Keil R G, Tsamakis E, Giddings J C, et al. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast[J]. Geochimica et Cosmochimica Acta, 1998, 62(8): 1347-1364.
    Arnarson T S, Keil R G. Organic-mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy[J]. Organic Geochemistry, 2001, 32(12): 1401-1415.
    Giddings J C. A system based on Split-Flow Lateral-Transport Thin (SPLITT) separation cells for rapid and continuous particle fractionation [J]. Separation Science and Technology, 1985, 20(9/10): 749-768.
    Giddings J C. Continuous separation in Split-Flow Thin (SPLITT) cells: potential applications to biological materials [J]. Separation Science and Technology, 1988, 23(8/9): 931-943.
    Walling D E, Woodward J C. Use of a field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment[J]. Water Research, 1993, 27(9): 1413-1421.
    何会军, 于志刚, 陈洪涛, 等. 水淘选颗粒物分级方法的研究与应用[J]. 中国海洋大学学报, 2010, 40(2): 68-72. He Huijun, Yu Zhigang, Chen Hongtao, et al. The water elutriator method for particle size seperation and its application[J]. Periodical of Ocean University of China, 2010, 40(2): 68-72.
    张龙军, 刘立芳, 张向上. 应用多元线性回归法测定黄河口不同粒径悬浮物中的有机碳含量[J]. 分析化学, 2008, 36(5): 567-571. Zhang Longjun, Liu Lifang, Zhang Xiangshang. Application of multiple linear regression in studying particulate organic carbon content in size fractioned total suspended solids in Huanghe estuary[J]. Chinese Journal of Analytical Chemistry, 2008, 36(5): 567-571.
    Zhang L J, Zhang J, Gong M N. Size distributions of hydrocarbons in suspended particles from the Yellow River[J]. Applied Geochemistry, 2009, 24(7): 1168-1174.
    Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport in the Yellow River[J]. Biogeosciences, 2013, 10: 2513-2524.
    He H J, Chen H T, Yao Q Z, et al. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 859-868.
    He H J, Yu Z G, Yao Q Z, et al. The hydrological regime and particulate size control phosphorus form in the suspended solid fraction in the dammed Huanghe (Yellow River) [J]. Hydrobiologia, 2010, 638(1): 203-211.
    Zhu C, Xue B, Pan J M, et al. The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics[J]. Organic Geochemistry, 2008, 39(8): 952-957.
    Li X X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145/147: 37-52.
    Lin T, Hu L M, Guo Z G, et al. Deposition fluxes and fate of polycyclic aromatic hydrocarbons in the Yangtze River estuarine-inner shelf in the East China Sea[J]. Global Biogeochemical Cycles, 2013, 27(1): 77-87.
    Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1-11.
    Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses[J]. Organic Geochemistry, 2008, 39(4): 422-439.
    Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413: 232-238.
    Vonk J E, Sánchez-García L, Semiletov I P, et al. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea[J]. Biogeosciences, 2010, 7: 3153-3166.
    Karlsson E S, Charkin A, Dudarev O, et al. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea[J]. Biogeosciences, 2011, 8: 1865-1879.
    Li D, Yao P, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139: 409-419.
    Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1/2): 111-126.
    Yu H, Wu Y, Zhang J, et al. Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F4): F04029.
    Zhu C, Wang Z H, Xue B, et al. Characterizing the depositional settings for sedimentary organic matter distributions in the Lower Yangtze River-East China Sea Shelf System[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 182-191.
    Bergamaschi B A, Tsamakis E, Keil R G, et al. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1247-1260.
    Liu Z F, Breecker D, Mayer L M, et al. Composition of size-fractioned sedimentary organic matter in coastal environments is affected by difference in physical forcing strength[J]. Organic Geochemistry, 2013, 60: 20-32.
    Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[M]//Hill M N. The Sea, Vol. 2. New York: Interscience, 1963: 26-87.
    Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[M]//Stable Isotopes in Ecological Research. New York: Springer, 1989: 196-229.
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195-212.
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250.
    Goni M A, Teixeira M J, Perkeya D W. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA)[J]. Estuarine, Coastal and Shelf Science, 2003, 57(5/6): 1023-1048.
    Tesi T, Miserocchi S, Goni M A, et al. Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France[J]. Marine Chemistry, 2007, 105(1/2): 107-117.
    Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7/8): 319-361.
    Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments [J]. Marine Chemistry, 2004, 92(1/4): 239-261.
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141-2156.
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3/4): 208-224.
    Hedges J I, Mann D C. The characterization of plant tissues by their lignin oxidation products[J]. Geochimica et Cosmochimica Acta, 1979, 43(11): 1803-1807.
    Hedges J I, Clark W A, Cowie G L. Organic matter sources to the water column and surficial sediments of a marine bay[J]. Limnology and Oceanography, 1988, 33(5): 1116-1136.
    Goni M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055-3075.
    柯金虎, 朴世龙, 方精云. 长江流域植被净第一性生产力及其时空格局研究[J]. 植物生态学报, 2003, 27(6): 764-770. Ke Jinhu, Pu Shilong, Fang Jingyun. NPP and its spatio-temporal patterns in the Yangtze River watershed[J]. Acta Phytoecologica Sinica, 2003, 27(6): 764-770.
    Goni M A, Nelson B, Blanchette R A, et al. Fungal degradation of wood lignins: geochemical perspectives from CuO-derived phenolic dimers and monomers[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3985-4002.
    Opsahl S, Benner R. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(23): 4889-4904.
    Bianchi T S, Argyrou M, Chippett H F. Contribution of vascular-plant carbon to surface sediments across the coastal margin of Cyprus (eastern Mediterranean)[J]. Organic Geochemistry, 1999, 30(5): 287-297.
    Sánchez-García L, Ramón de Andrés L, Antonio Martín-Rubí J, et al. Diagenetic state and source characterization of marine sediments from the inner continental shelf of the Gulf of Cádiz (SW Spain), constrained by terrigenous biomarkers[J]. Organic Geochemistry, 2009, 40(2): 184-194.
    Jex C N, Pate G H, Blyth A J, et al. Lignin biogeochemistry: from modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87: 46-59.
    Hedges J I, Blanchette R A, Weliky K, et al. Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study[J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2717-2726.
    Prahl F G, Ertel J R, Goni M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3035-3048.
    Louchouarn P, Lucotte M, Farella N. Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment[J]. Organic Geochemistry, 1999, 30(7): 675-699.
    Farella N, Lucotte M, Louchouarn P, et al. Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon[J]. Organic Geochemistry, 2001, 32(12): 1143-1458.
    Houel S, Louchouarn P, Lucotte M, et al. Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in situ productivity[J]. Limnology and Oceanography, 2006, 51(3): 1497-1513.
    Dittmar T, Lara R J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1417-1428.
  • 加载中
计量
  • 文章访问数:  1644
  • HTML全文浏览量:  6
  • PDF下载量:  1093
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22

目录

    /

    返回文章
    返回