留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海冰动力过程的改进离散元模型及在渤海的应用

季顺迎 王安良 米丽丽 刘煜 李宝辉

季顺迎, 王安良, 米丽丽, 刘煜, 李宝辉. 海冰动力过程的改进离散元模型及在渤海的应用[J]. 海洋学报, 2015, 37(5): 54-67. doi: 10.3969/j.issn.0253-4193.2015.05.006
引用本文: 季顺迎, 王安良, 米丽丽, 刘煜, 李宝辉. 海冰动力过程的改进离散元模型及在渤海的应用[J]. 海洋学报, 2015, 37(5): 54-67. doi: 10.3969/j.issn.0253-4193.2015.05.006
Ji Shunying, Wang Anliang, Mi Lili, Liu Yu, Li Baohui. Modified discrete element model for sea ice dynamics and its applications in the Bohai Sea[J]. Haiyang Xuebao, 2015, 37(5): 54-67. doi: 10.3969/j.issn.0253-4193.2015.05.006
Citation: Ji Shunying, Wang Anliang, Mi Lili, Liu Yu, Li Baohui. Modified discrete element model for sea ice dynamics and its applications in the Bohai Sea[J]. Haiyang Xuebao, 2015, 37(5): 54-67. doi: 10.3969/j.issn.0253-4193.2015.05.006

海冰动力过程的改进离散元模型及在渤海的应用

doi: 10.3969/j.issn.0253-4193.2015.05.006
基金项目: 国家自然科学基金项目(41176012);国家海洋公益性行业科研专项经费项目(201105016, 201205007);高等学校博士学科点专项科研基金项目(20130041110010)。

Modified discrete element model for sea ice dynamics and its applications in the Bohai Sea

  • 摘要: 海冰的断裂、重叠和堆积等离散分布特性广泛地存在于极区和副极区的不同海域,并对海冰的生消、运移过程有着重要影响。针对海冰在不同尺度下的离散分布特点,发展海冰动力过程的离散元方法有助于完善海冰数值模式,提高海冰数值模拟的计算精度。为此,本文针对海冰生消运移过程中的非连续分布和形变特性,发展了适用于海冰动力过程的改进离散元模型(MDEM)。不同于传统离散元方法,该模型将海冰离散为具有一定厚度、尺寸和密集度的圆盘单元。海冰单元设为诸多浮冰块的集合体,其在运移和相互接触碰撞过程中,依照质量守恒发生单元尺寸、密集度和厚度的相应变化。基于海冰离散性和流变性的特点,该模型采用黏弹性接触本构模型计算单元间的作用力,并依据Mohr-Coulomb准则计算海冰法向作用下的塑性变形及切向摩擦力。为验证该模型的可靠性,本文对海冰在规则水域内的运移和堆积过程进行了分析,离散元计算结果与解析值相一致;此外,对旋转风场下海冰漂移规律的模拟进一步验证了本文方法的精确性。在此基础上,对渤海辽东湾的海冰动力过程进行了48 h数值分析,计算结果与卫星遥感资料和油气作业区的海冰现场监测数据吻合良好。在下一步工作中将考虑海冰离散元模拟中的热力因素影响,发展具有冻结、断裂效应的海冰离散元模型,更精确地模拟海冰动力-热力耦合作用下的生消和运移过程。
  • 季顺迎,岳前进. 工程海冰数值模型及应用[M]. 北京:科学出版社,2011. Ji Shunying,Yue Qianjin. Engineering Sea Ice Numerical Model and its Application[M]. Beijing: Science Press,2011.
    Holland M M,Stroeve J. Changing seasonal sea ice predictor relationships in a changing Arctic climate[J]. Geophysical Research Letters,2011,38: L18501.
    Dempsey J P. Research trends in ice model[J]. International Journal of Solids and Structures,2000,37(2): 131-153.
    Lepparanta M,Lensu M,Lu Q M. Shear flow of sea ice in the Marginal Ice Zone with collision theology[J]. Geophysica,1990,25(1/2):57-74.
    Tremblay L B,Mysak L A. Modeling sea ice as a granular material,including the dilatancy effect[J]. Journal of Physical Oceanography,1997,27(2): 2342-2360.
    OverLand J E,McNutt S L,Salo S,et al. Arctic sea ice sa a granular plastic[J]. Journal of Geophysical Research,1998,103(C10): 21845-21868.
    Hibler W D. Sea ice fracturing on the large scale[J]. Engineering Fracture Mechanics,2001,68(4): 2013-2043.
    Schulson E M. Compressive shear fault within arctic sea ice: Fracture on scale large and small[J]. Journal of Geophysical Research,2004,109(C07016): 1-23.
    Hibler W D. A Dynimic Thermodynamic sea ice model[J]. Journal of Geophysical Oceanography,1979,9(3):817-846.
    Zhang Z H,Lepparanta M. Modeling the influence of ice on sea level variations in the Baltic Sea[J]. Journal of Geophysical Research,1995,31(2): 31-45.
    吴辉碇. 海冰的动力-热力过程的数学处理[J]. 海洋与湖沼,1991,20(4): 321-327. Wu Huiding. Mathematic representations of sea ice dynamic thermodynamic processes[J]. Oceanologia et Limnologia Sinica,1991,20(4): 321-327.
    苏洁,吴辉碇,白珊,等. 渤海冰-海洋耦合模式:Ⅱ.个例试验[J]. 海洋学报,2005,27(2): 18-27. Su Jie,Wu Huiding,Bai Shan,et al. A coupled ice-ocean model for the Bohai Sea:Ⅱ. Case study[J]. Haiyang Xuebao,2005,27(2): 18-27.
    Gutfraind R,Savage S B. Smoothed Particle Hydrodynamics for the simulation of broken-ice field: Mohr-Coulomb-Type rheology and frictional boundary conditions[J]. Journal of Computational Physics,1997,134(3): 203-215.
    季顺迎,沈洪道,王志联,等. 基于Mohr-Coulomb准则的黏弹塑性海冰动力学本构模型[J]. 海洋学报,2005,27(4): 19-30. Ji Shunying,Shen Hongdao,Wang Zhilian,et al. A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics[J]. Haiyang Xuebao,2005,27(4): 19-30.
    Flato G M. A particle-in-cell sea-ice model[J]. Atmosphere and Oceanography,1993,31(3): 339-358.
    Huang Z J,Savage S B.Particle-in-cell and finite difference approaches for the study of marginal ice zone problems[J]. Cold Regions Science and Technology,1998,28(1):1-28.
    刘煜,吴辉碇,张占海,等. 基于质点-网格模式的海冰厚度变化过程数值模拟[J]. 海洋学报,2006,28(2): 14-21. Liu Yu,Wu Huiding,Zhang Zhanhai,et al. Modeling for the dynamic process of ice thickness variation using a particle-in-cell ice model[J]. Haiyang Xuebao,2006,28(2): 14-21.
    Kubat I,Sayed M,Savage S,et al. Numerical simulations of ice thickness redistribution in the Gulf of St. Lawrence[J]. Cold Regions Science and Technology,2010,60(2): 15-28.
    Zhang J,Rothrock D A. Effect of sea ice rheology in numerical investigations of climate[J]. Journal of Geophysical Research,2005,110: C08014.
    Hutchings J K,Jasak H,Laxon S W. A strength implicit correction scheme for the viscous-plastic sea ice model[J]. Ocean Modelling,2004,7(2): 111-133.
    Wang L R,Ikeda M. A Lagrangian description of sea ice dynamics using the finite element method[J]. Ocean Modelling,2004,7(3): 21-38.
    Sulsky D,Schreyer H,Peterson K,et al. Using the material-point method to model sea ice dynamics[J]. Journal of Geophysical Research,2007,112: C02S90.
    李海,季顺迎,沈洪道,等. 海冰动力学的混合拉格朗日-欧拉数值方法[J]. 海洋学报,2008,30(2):1-11. Li Hai,Ji Shunying,Shen Hongdao,et al. A hybrid Lagrangian-Eulerian numerical model for sea ice dynamics[J]. Haiyang Xuebao,2008,30(2):1-11.
    Lemieux J F,Tremblay B,Sedlcek J,et al. Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton Krylov method[J]. Journal of Computational Physics,2010,229: 2840-2852.
    Tsamados M,Feltham D L,Wilchinsky A V. Impact of a new anisotropic rheology on simulations of Arctic sea ice[J]. Journal of Geophysical Research,2013,doi: 10.1029/2012JC007990.
    Coon M D,Knoke G S,Echert D C,et al. The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law[J]. Journal of Geophysical research,1998,103(C10): 21915-21925.
    Hunk E C,Dukowicz J K. An elastic-viscous-plastic model for sea ice dynamics[J]. Journal of Physical Oceanography,1997,27(2): 1849-1867.
    Losch M,Danilov S. On solving the momentum equations of dynamic sea ice models with implicit solvers and the elastic-viscous-plastic technique[J]. Ocean Modelling,2012,41(4): 42-52.
    王刚,岳前进,李海,等. 基于SPH方法的渤海海冰动力学数值模拟[J]. 大连理工大学学报,2007,47(3): 323-328. Wang Gang,Yue Qianjin,Li Hai,et al. Numerical simulation of sea ice dynamics with Sph approach in Bohai Sea[J]. Journal of Dalian University of Technology,2007,47(3): 323-328.
    Liu M B,Liu G R. Smoothed Particle Hydrodynamics(SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering,2010,17(3):25-76.
    Dai M,Shen H H,Hopkins M A,et al. Wave rafting and the equilibrium pancake ice cover thickness[J]. Journal of Geophysical Research,2004,109: C07023.
    Herman A. Influence of ice concentration and floe-size distribution on cluster formation in sea-ice floes[J]. Central European Journal of Physics,2012,10(3): 715-722.
    Wilchinsky A V,Feltham D L. Rheology of discrete failure regimes of anisotropic sea ice[J]. Journal of Physical Oceanography,2012,42(4): 1965-1082.
    季顺迎,李春花,刘煜. 海冰离散元模型的研究回顾及展望[J]. 极地研究,2012,24(4): 315-330. Ji Shunying,Li Chunhua,Liu Yi. A review of advances in sea-ice discrete element models[J]. Chinese Journal of Polar Research,2012,24(4): 315-330.
    Rothrock D,Thomdike A S. Measuring the sea ice grian size distribution[J]. Journal of Geophysical Research,1984,89(C4):6477-6486.
    Shen H H,Hibler W D,Lepparanta M. On applying granular flow theory to a deforming broken ice field[J]. Acta Mechanics,1986,63(3): 143-160.
    Wichinsky A V,Feltham D L. Anisotropic model for granulated sea ice dynamics[J]. Journal of the Mechanics and Physics of Solids,2006,54(4):1147-1185.
    Sedlacek J,Lemieux J F,Mysak L A,et al. The granular sea ice model in spherical coordinates and its application to a global climate model[J]. Journal of Climate,2007,20(1):5946-.5961.
    Hopkins M A,Frankenstein S,Thorndike A S. Formation of an aggregate scale in Arctic sea ice[J]. Journal of Geophysical Research,2004,109: C01032.
    Hopkins M A,Thorndike A S. Floe formation in Arctic sea ice[J]. Journal of Geophysical Research,2006,111: C11S23.
    Shen H T,Shen H H,Tsai S M. Dynamic transport of river ice[J]. Journal of Hydraulic research,1990,28(6): 659-671.
    Babic M,Shen H H,Shen H T. The stress tensor in granular shear flows of uniform,deformable disks at high solids concentrations[J]. Journal of Fluid Mechanics,1990,219(4): 81-118.
    Pariset E,Hausser R,Gagnon A. Formation of ice cover and ice jams in rivers[J]. Journal of Hydraulics Division,ASCE,1966,92(HY6):1-24.
    沈洪道. 冰动力学的拉格朗日离散元模式[J]. 海洋预报,1999,16(3): 71-84. Shen Hongdao. Lagrangian discrete-parcel model for ice dynamics[J].Marine Forecasts,1999,16(3): 71-84.
    季顺迎,王安良,王宇新,等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报,2011,33(4): 79-87. Ji Shunying,Wang Anliang,Wang Yuxin,et al. A digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Haiyang Xuebao,2011,33(4): 79-87.
    Kwok R,Cunningham G F. ICES at over Arctic sea ice: Estimation of snow depth and ice thickness[J]. Journal of Geophysical Research,2008,113:C08010.
    Sun B,Wen J,He M,et al. Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J]. Science China,2003,46(11): 1151-1160.
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  17
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-28
  • 修回日期:  2015-01-11

目录

    /

    返回文章
    返回