Spatial distribution study of cobalt-rich crusts ore formation on the central Pacific seamount
-
摘要:
海山是富钴结壳主要的成矿载体,结壳成矿分布不仅受到海洋最低含氧带、碳酸盐补偿深度、生物生产力、物质来源、海水氧含量等大尺度宏观因素的影响,同时也受到海山地形、沉积作用和底层海流冲刷等小尺度微观因素的控制。通过对以中太平洋R海山为主的水下结壳成矿与分布的深入研究,发现结壳富集区以海山浅水区域为主;地形地貌上的尖顶高地区、顶坡过渡带、山体鞍部、山脊、斜坡上部等区域结壳质量较好,覆盖率高;下斜坡、山谷、山顶平坦区和斜坡区平缓台地是结壳贫乏区,结壳厚度小、覆盖率也低;15°以下的小坡度地形结壳成矿较好,3°~7°最佳,15°以上的大坡度区质量有所下降,陡崖区最差。地形对结壳分布和成矿起基础性影响作用,沉积作用和底流冲刷分别起到阻滞和促进作用,海流是保持低坡度区结壳长期稳定生长的关键因素,地形控矿本质上是和底层流联合对抗沉积堆积作用的过程。
Abstract:Seamounts in the ocean are the main base of cobalt-rich ferromanganese crusts (hereinafter called crusts) mineralization. The distribution of crusts is not only influenced by large-scale macroscopic factors, for example the oxygen minimum zone, the carbonate compensation depth, biological productivity, ore-forming material sources and oxygen content of the seawater etc, but also controlled by small-scale factors of seamount topography, marine sedimentation and bottom current scouring. Based on in-depth study of ore formation and distribution of cobalt-rich crusts on the Seamount R, central Pacific mainly, those are discovered that crusts enrich in the shallower water on seamount, elevation of the summit, translation zone between summit and slope, saddle, ridge and upper slope are all favorable topography for crust mineralization with better quality and coverage, whereas the down slope, valley, flat region of the summit and subdued platform of the slope are pauvre of crusts, with smaller thickness and coverage, the mineralization of crusts is better in area with gradient less than 15°, optimal in 3° to 7°, and where with gradient larger than 15° will degressive, and become worst in cliff area, seamount topography have a fundamental influence on distribution and mineralization of the crusts, sedimentation and bottom current scouring play a part of obstruction and promotion individually, bottom current is the key factor to ensure long-term growth of crusts on lower gradient, the essence of controlling on crusts mineralization by seamount topography is a process to countermine sedimentation by cooperation between bottom current and topography.
-
Key words:
- central Pacific seamount /
- cobalt-rich crusts /
- mineralization /
- spatial distribution /
- topography /
- bottom current /
- sedimentation
-
Craig J D, Andrews J E, Meylan M A. Ferromanganese deposits in the Hawaiian Archipelago[J]. Marine Geology, 1982, 45: 127-157. Halbach P, Manheim F T. Potential of cobalt and other metals in ferromanganese crusts on seamounts of the central Pacific Basin[J]. Marine Mining, 1984, 4: 319-336. Hein J R, Manheim F T, Schwab W C, et al. Ferromanganese crusts from Necker ridge, Horizon Guyot and S. P. Lee Guyot: geological considerations[J]. Marine Geology, 1985, 69: 25-54. Hein J R, Schwab W C, Davis A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands[J].Marine Geology, 1988, 78: 255-283. Hein J R, Koschinsky A, Halbach P, et al. Iron and manganese oxide mineralization in the Pacific[J]. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 1997, 119: 123-138. Aplin A C, Cronan D S. Ferromanganese oxide deposits from the central Pacific Ocean: Ⅰ. Encrustations from the Line Islands Archipelago[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 427-436. Claude P, Michel H. Characteristics of Co-rich ferromanganese nodules and crusts sampled in French Polynesia[J]. Marine Geology, 1987, 77(1): 109-119. Commeau R F, Clark A, Johnson C, et al. Ferromanganese crust resources in the Pacific and Atlantic Oceans[J]. IEEE, 1984: 421-430. Halbach P, Sattler C D, Teichmann F, et al. Cobalt-rich and platinum bearing manganese crust deposits on seamounts: nature, formation and metal potential[J]. Marine Mining, 1989, 8(1): 23-40. Manheim F T. Marine cobalt resources[J]. Science, 1986, 232(4750): 600-608. Halbach P, Sattler C D, Teichmann F, et al. Characterization of Co-rich ferromanganese crust fields within the Johnston Island EEZ (Central Pacific)[C]//OCEANS'87. IEEE, 1987: 1015-1020. 施阔里尼科, 洛施别尔格, 等.麦哲伦海山区平顶山钴结壳的产出条件、分布规律和形成特点[J]. 陈邦彦, 译.海洋地质, 2003, 2: 22-33. Yamazaki T, Sharma R. Morphological features of Co-rich manganese deposits and their relation to seabed slopes[J]. Marine Georesource & Geotechnology, 2000, 18: 43-76. ГОРШКОВ А И.大洋海底山铁-锰结壳和结核的矿物成分与成因[J]. 王勋弟, 译. 地质科学译丛, 1992. 9(3): 54-59. 周怀阳, 武光海, 杨树锋.关于对我国大洋富钴结壳进行地质经济评价工作的讨论[J].地质与勘探, 2001, 37(2):1-5. Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from central Pacific seamount areas[J]. Earth Planet Sci Lett, 1984, 68: 73-87. Decarlo E H, Mcmurtry G M. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific[J]. Chemical Geology, 1992, 95: 235-250. Hodkinson R A, Cronan D S. Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacent parts of the central equatorial Pacific[J]. Marine Geology, 1991, 98: 437-447. Halbach P, Kriete C, Prause B, et al. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts[J]. Chemical Geology, 1989, 76: 95-106. Hein J R, Bohrson W A, Schulz M S. et al. Variations in the fine-scale composition of a central Pacific ferromanganese crust: paleoceanographic implications[J]. Paleoceanography, 1992, 71: 63-77. Segl M, Manginia A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events[J]. Paleoceanography, 1989, 45: 511-530. Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[C]//Cronan D S (eds), Handbook of Marine Mineral Deposits.Boca Raton FL:CRC Press, 2000, 239-279. 潘家华, 刘淑琴.西太平洋富钴结壳的分布、组分及元素地球化学[J].地球学报, 1999, 20(1):47-54. Chu Fengyou, Qian Xinyan, Zhang Haisheng, et al. Discovery of ferromanganese crusts boundary and its genetic and ore prospecting significance[J]. Journal of Zhejiang University SCIENCE, 2005, 6A(7): 656-662. Chu Fengyou, Sun Guosheng, Ma Weilin, et al. Classification of seamount morphology and its evaluating significance of ferramanganese crusts in the central Pacific Ocean[J]. Acta Oceanologica Sinica, 2006, 25(2): 63-70. 石学法, 任向文, 刘季花.太平洋海山成矿系统与成矿作用过程[J].地学前缘, 2009, 16(6):55-65. 何高文, 梁东红, 宋成兵, 等.浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线[J].中国地质大学学报:地球科学, 2005, 30(4):509-512. 李守军, 陶春辉, 初凤友, 等.浅地层剖面在富钴结壳调查研究中的应用[J].海洋技术, 2007, 26(1):54-57. 马维林, 金翔龙, 初凤友.富钴结壳资源评价和圈矿方法探讨[J].海洋学报, 2007, 29(2):67-73. Lee Tae-Gook, Hein J R, Leed Kiehwa, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp(3-7kHz) subbottom profiles[J]. Deep-Sea Research Ⅰ, 2005, 52: 1932-1956. Yamazaki T. A reevaluation of cobalt-rich crust abundance on the pacific seamounts[J]. International Journal of Offshore and Polar Engineering, 1993, 3(4): 258-263. Klinkhammer G P, Bender M L. The distribution of manganese in the Pacific-Ocean[J]. Earth and Planetary Science Letters, 1980, 46(3): 361-384. -
计量
- 文章访问数: 1489
- HTML全文浏览量: 3
- PDF下载量: 1008
- 被引次数: 0