留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岛屿岛礁海域海浪能谱模型研究进展

毛科峰 陈希 王亮

毛科峰, 陈希, 王亮. 岛屿岛礁海域海浪能谱模型研究进展[J]. 海洋学报, 2014, 36(5): 161-169. doi: 10.3969/j.issn.0253-4193.2014.05.018
引用本文: 毛科峰, 陈希, 王亮. 岛屿岛礁海域海浪能谱模型研究进展[J]. 海洋学报, 2014, 36(5): 161-169. doi: 10.3969/j.issn.0253-4193.2014.05.018
Mao Kefeng, Chen Xi, Wang Liang. Research progress of spectral wave mode of archipelago or reef ocean region[J]. Haiyang Xuebao, 2014, 36(5): 161-169. doi: 10.3969/j.issn.0253-4193.2014.05.018
Citation: Mao Kefeng, Chen Xi, Wang Liang. Research progress of spectral wave mode of archipelago or reef ocean region[J]. Haiyang Xuebao, 2014, 36(5): 161-169. doi: 10.3969/j.issn.0253-4193.2014.05.018

岛屿岛礁海域海浪能谱模型研究进展

doi: 10.3969/j.issn.0253-4193.2014.05.018
基金项目: 国家自然科学基金项目(41331174);国家自然科学基金项目(11102232)。

Research progress of spectral wave mode of archipelago or reef ocean region

  • 摘要: 波浪能谱模型在岛屿岛礁海域的波浪预报研究和海洋工程中应用广泛,但存在模式计算格点无法充分体现岛屿岛礁的复杂地形特征和很难刻画波浪受到岛屿岛礁影响发生变形物理过程等两个关键问题。多重网格嵌套方案、岛屿次网格地形效应计算方案以及非结构网格、无网格、动态自适应四叉树网格等技术在体现岛屿岛礁复杂地形方面取得了较好的效果;将相位解析模型与波浪能谱模型优势互补是提高能谱模型对岛屿近岸波浪变形物理过程计算能力的一个有效方法。开展球坐标系下波作用密度谱方程的自适应四叉树网格求解方法研究,借鉴相位解析模型最新成果完善能谱模式的绕射、反射、底摩擦等物理过程,是提高岛屿岛礁海域海浪精细预报技术水平的前沿性、探索性研究方向。
  • Beji S, Battjes J A. Numerical simulation of nonlinear wave propagation over a bar[J]. Coastal Engineering, 1994, 23(1/2): 1-16.
    黄虎, 丁平兴, 吕秀红. 三维缓变流场上波浪折射-绕射的缓坡方程[J].力学学报, 2001, 33(1):11-18.
    Holthuijsen L H, Herman A, Booij N. Phase-decoupled refraction-diffraction for spectral wave models[J]. Coastal Engineering, 2003, 49(4), 291-305.
    潘军宁, 左其华, 王登婷. 港域波浪数学模型的改进与验证[J].海洋工程, 2008, 26(2): 34-42.
    Pawka S S. Islands shadows in wave directional spectra[J]. Journal of Geophysical Research:Oceans(1978—2012), 1983, 88:2579—2591.
    Pawka S S, Juman D L, Guza R T. Island sheltering ofsurface gravity waves: Model and experiment[J]. Cont Shelf Res, 1984, 3: 35-53.
    O'Reilly W C, Guza R T, Seymour R J. Wave prediction in the Santa Barbara channel[C]//Proceedings of the 5th California Islands Symposium, 1999:76-80.
    Christopoulos S. Wind-wave modelling aspects within complicate topography Ann[J]. Geophysicae, 1997, 15:1340-1353.
    de Leσn S P, Guedes-Soares C. On the sheltering effect of islands in ocean wave models[J]. Journal of Geophysical Research:Oceans(1978—2012), 2005, 110(C9): 110.
    de León S P, Pilar P, Guedes-Soares C. Wave hindcastof the entrance of Lisbon Harbour(in Portuguese)[C]//Proceedings of Congressode Me'todos Computacionais em Engenharia. Lisbon, 2004.
    de León S P, Pilar P, Guedes-Soares C. On the accuracy of wave models in the coastal zone[C]//Coastal Engineering Conference. ASCE American Society of Civil Engineers, 2004, 29(1):920.
    Lowe R J, Falter J L, Bandet M D, et al. Spectral wave dissipation over a barrier reef[J]. Journal of Geophysical Research: Oceans(1978-2012), 2005, 110(C4).
    Andréfouët S, Ouillon S, Brinkman R, et al. Review of solutions for 3D hydrodynamic modeling applied to aquaculture in South Pacific atoll lagoons[J]. Marine Pollution Bulletin, 2006, 52: 1138-1155.
    Rusu E, Pilar P, Guedes Soares C. Evaluation of the wave conditions in Madeira Archipelago with spectral models[J]. Ocean Engineering, 2008, 35(13): 1357-1371.
    Dumas F, Le Gendre R, Thomas Y, et al. Tidal flushing and wind driven circulation of Ahe atoll lagoon(Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling[J]. Marine Pollution Bulletin, 2012, 65: 425-440.
    Thomas Y, Le Gendre R, Garen P, et al. Bivalve larvae transport and connectivity within the Ahe atoll lagoon(Tuamotu Archipelago), with application to pearl oyster aquaculture management[J]. Marine Pollution Bulletin, 2012, 65: 441-452.
    Delpey M T, Ardhuin F, Collard F, et al. Space-time structure of long ocean swell fields[J]. Journal of Geophysical Research:Oceans(1978—2012), 2010, 115(C12).
    Andréfouët S, Ardhuin F, Queffeulou P, et al. Island shadow effects and the wave climate of the Western Tuamotu Archipelago(French Polynesia) inferred from altimetry and numerical model data[J]. Marine Pollution Bulletin, 2012, 65(10):415—424.
    Ardhuin F, Stutzmann E, Schimmel M, et al. Ocean wave sources of seismic noise[J]. Journal of Geophysical Research: Oceans(1978—2012), 2011, 116(C9).
    Rusu L, Guedes Soares C. Evaluation of a high-resolution wave forecasting system for the approaches to ports[J]. Ocean Engineering, 2012, 58:224-238.
    Van Dongeren A, Lowe R, Pomeroy A, et al. Numerical modeling of low-frequency wave dynamics over a fringing coral reef[J].Coastal Engineering, 2013, 73: 178-190.
    贾晓. 多岛海域风浪数值模拟[D]. 南京:南京水利科学研究院, 2010.
    潘军宁, 左其华, 王红川.多方向不规则波传播变形数值模拟[J]. 海洋工程, 2004, 22(3):14-19.
    Hardy T A, Mason L B, McConochie J D. A wave model for the Great Barrier Reef[J]. Ocean Engineering, 2001, 28:45-70.
    Tolman H L. Reatment of unresolved islands and ice in wind wave models[J]. Ocean Modelling, 2003, 5: 219-231.
    Holthuijsen L H. SWAN Ⅲ version 40.45 USER MANUAL[R]. Delft of Netherlands: Delft University of Technology, 2006.
    Ardhuin F, Tournadre J, Queffeulou P, et al. Observation and parameterization of small icebergs: drifting breakwaters in thesouthern ocean[J]. Ocean Modelling, 2011, 39: 405-410.
    毛科峰, 陈希, 萧中乐, 等. 复杂岛屿海域的台风浪局地特征模拟与分析——以舟山海域为例[J]. 海洋学研究, 2011, 29(4): 8-15.
    毛科峰, 陈希, 李妍, 等. WAVEWATCH -Ⅲ 海浪模式中岛屿次网格效应的检验与比较[J]. 海洋学报, 2012, 34(5): 11-19.
    毛科峰, 陈希, 李妍, 等. 琉球群岛海域海浪数值计算地形处理效应及试验分析[J]. 海洋科学, 2010, 34(11): 91.
    Dietrich J C. Limiters for spectral propagation velocities in SWAN[J]. Ocean Modelling, 2013, 70: 85-102.
    Qi J, Chen C, Beardsley R C, et al. An unstructured-grid finite-volume surface wave model(FVCOM-SWAVE): Implementation, validations and applications[J]. Ocean Modelling, 2009, 28(1): 153-166.
    Zijlema M. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids[J]. Coastal Engineering, 2010, 57(3): 267-277.
    季小强, 冯卫兵, 张俞.径向点插值法在波浪传播数值模拟中的应用[J].水科学进展, 2011, 22(2):258-265.
    Popinet S, Gorman R M, Rickard G J, et al. A quadtree-adaptive spectral wave model[J]. Ocean Modelling, 2010, 34: 36-49.
    Timothy R Keen. Applying Gerris to Mixing and Sedimentation in Estuaries[R]. U S Naval Research Laboratory, Stennis Space Center, 2011.
    Tsai C C, Hou T H, Popinet S, et al. Prediction of waves generated by tropical cyclones with a quadtree-adaptive model[J]. Coastal Engineering, 2013, 77: 108-119.
    Tolman H L, Baanner M L, Kaihatu J M. The NOPP operational wave model improvement project[J]. Ocean Modelling, 2013, 70: 2-10.
    Filipot J F, Cheung K F. Spectral wave modeling in fringing reef environments[J].Coastal Engineering, 2012, 67: 67-79.
    Resio D T. A steady-state wave model for coastal applications[J]. Coastal Engineering Proceedings, 1988, 1(21):929-940.
    Mase H.Multidirectional random wave transformation model based on energy balance equation[J].Coastal Engineering Journal, 2001, 43(4):317-337.
    Booij N, Holthuijsen L H, Doorn N, et al. Diffraction in a spectral wave mode[C]//Proceedings of the 3rd International Symposium on Ocean Wave Measurement and Analysis Waves.New York:American Society of Civil Engineering, 1997:243-255.
    Rusu E, Pinto J P, Silva R, et al. A method to predict wave conditions in island environment[C]//The 7th International Workshop on Wave Hindcasting and Forecasting. Banff, 2002: 215-226.
    Allard R, Dykes J, Hsu Y L, et al. A real-time nearshore wave and current prediction system[J]. Journal of Marine Systems, 2008, 69(1): 37-58.
    Smith J M, Sherlock A R, Resio D T. STWAVE: Steady-state spectral wave model user's manual for STWAVE, Version 3.0[R]. Engineer Research and Development Center Vicksburg ms Coastal and Hydraulicslab, 2001.
    Kirby J T, Dalrymple R A. Combined Refraction/Diffraction Model REF/DIF 1, Version 2.5: Documentation and User's Manual[M]. Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, 1994.
    Mettlach T R, Earle M D, Hsu Y L. Software Design Document for the Navy Standard Surf Model Version 3.2[R]. Naval Research Lab Stennis Space Center ms Oceanography Div, 2002.
    Rivero F J, Arcilla A S, Carci E. Analysis of diffraction in spectral wave models[C]//Proceedings of 3rd International Symposium Ocean Wave Measurement and Analysis WAVES-97. New York:American Society of Civil Engineerin, 1997:43l-435.
    张景新, 刘桦.基于相平均方法的折射绕射联合波浪模型[J].力学学报, 2007, 39(5):595-601.
    张齐焰, 孙志林. 港池波浪绕射的数值计算[J]. 浙江大学学报: 理学版, 2010, 37(1): 117-122.
    Homma S. On the behavior of seismic sea waves around circular island[J]. Geophys Mag, 1950, 21(3): 199-208.
    Berkhoff J C W. Computation of combined refraction-diffraction[C]//Proceeding of 13th Coastal Engineering Conference ASCE, 1972:471-490.
    Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models[J]. Coastal Engineering, 1986, 9(6):545-561.
    尹宝树, 蒋德才. 于复杂地形和存在流的浅水域波浪的折射绕射联合模式 Ⅰ[J]. 海洋学报, 1989, 11(6): 682-692.
    蒋德才, 台伟涛, 楼顺里. 海浪能量谱的折绕射研究 Ⅰ——缓坡上的联合模型[J]. 海洋学报, 1993, 15(2): 84-96.
    李玉成, 张永刚. 缓坡方程与 Boussinesq 方程的差异性比较[J]. 海洋通报, 1996, 15(4): 1-7.
    李玉成, 张永刚. 不规则波和方向谱在有定常流条件下折射-绕射问题[J]. 水动力学研究与进展: A 辑, 1996, 10(6): 667-672.
    冯卫兵, 洪广文. 水流中波浪绕射折射数值计算与分析[J]. 海洋工程, 2000, 18(4): 13-20.
    黄虎. 波-流相互作用的缓坡方程及其波作用量守恒[J]. 力学学报, 2005, 37(5):627-631.
    李孟国. 海岸河口水动力数值模拟研究及对泥沙运动研究的应用[D]. 青岛: 青岛海洋大学, 2002.
    李瑞杰, 魏守林, 王厚杰, 等. 波浪绕射非线性数学模型[J]. 水动力学研究与进展: A 辑, 2003, 18(1): 42-46.
    郑金海.波流共存场中多向随机波浪传播变形数学模型[J]. 水科学进展, 2008, 19(1): 78-83.
    唐军, 魏美芳.非结构化网格下近岸波生流数值模拟[J]. 海洋学报, 2011, 34(6): 41-46.
    潘军宁, 左其华, 王红川.多方向不规则波传播变形数值模拟[J].海洋工程, 2004, 22(3):14-19.
    Chamberlain P G, Porter D. The modified mild slope equation[J]. J Fluid Mech, 1995, 291:393-407.
    Klopman G, Dingemans M W. Reflection in variational models for linear water waves[J]. Wave Motion, 2010, 47:469-489.
    邹志利.水波理论及其应用[M]. 北京:科学出版社, 2005.
    Massel S R. Extended refraction-diffraction equation for surface waves[J].Coastal Engineering, 1993, 19:97-126.
    Belibassakis K A. A coupled-mode model for the scattering of water waves by shearing currents in variable bathymetry[J]. J Fluid Mech, 2007, 578:413-434.
    Belibassakis K A, Gerostathis Th P, Athanassoulis G A. A weakly nonlinear coupled-mode model for wave-current-seabed interaction over general bottom topography[C]//In ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008:465-473.
    Liau J M, Roland A, Hsu T W, et al. Wave refraction-diffraction effect in the wind wave model WWM[J]. Coastal Engineering, 2011, 58(5): 429-443.
    Toledo Y, Agnon Y. Three dimensional application of the complementary mild-slope equation[J]. Coastal Engineering, 2011, 58(1): 1-8.
    郑金海, 赵丽娜, 李同飞. 河口海岸波浪谱模型中考虑绕射效应方法的比较[J]. 交通科学与工程, 2009, 25(2): 78-82.
    Zheng Jianhai, Nguyen V T, Zhang Chi. Spectral wave transformation model for simulating refraction-diffraction with strongly reflecting coastal structures[J]. Acta Oceanologica Sinica, 2011, 30(2): 25-32.
    Ding Y, Wang S S Y. Modeling of wave-current interaction using a multidirectional wave-action balance equation[J]. Coastal Engineering Proceedings, 2011, 1(32): 47.
    Uchiyama Y, McWilliams J C, Shchepetkin A F. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone[J]. Ocean Modelling, 2010, 34: 16-35.
    Toledo Y, Hsu T W, Roland A. Extended time-dependent mild-slope and wave-action equations for wave-bottom and wave-current interactions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2012, 468(2137): 184-205.
  • 加载中
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  10
  • PDF下载量:  1641
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-04
  • 修回日期:  2013-11-01

目录

    /

    返回文章
    返回