留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无震脊或海山链俯冲对超俯冲带处的地质效应

鄢全树 石学法

鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123. doi: 10.3969/j.issn.0253-4193.2014.05.012
引用本文: 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123. doi: 10.3969/j.issn.0253-4193.2014.05.012
Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Haiyang Xuebao, 2014, 36(5): 107-123. doi: 10.3969/j.issn.0253-4193.2014.05.012
Citation: Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Haiyang Xuebao, 2014, 36(5): 107-123. doi: 10.3969/j.issn.0253-4193.2014.05.012

无震脊或海山链俯冲对超俯冲带处的地质效应

doi: 10.3969/j.issn.0253-4193.2014.05.012
基金项目: 国家自然科学基金项目(41322036,41230960,41276003,40906034);中国综合大洋钻探计划(IODP-China);中国大洋协会项目(DY125-12-R-05)。

Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone

  • 摘要: 全球海底分布着众多的无震脊或海山链,且在太平洋、印度洋及大西洋均存在靠近俯冲带的海岭。除小安德列斯弧外的巴拉克达脊和蒂勃朗脊起源自转换断层外,一般认为它们由与板块构造动力学迥异的地幔柱动力学所形成的。在板块汇聚边缘处,与扩张脊处所形成的正常洋壳一起,无震脊或海山链俯冲于陆缘弧或洋内弧之下,其对弧及弧后地区的地质效应(构造、地貌、地震以及岩浆作用等)有别于正常洋壳俯冲。无震脊或海山链的俯冲通常造成俯冲带地区的上驮板块的局部异常抬升、俯冲剥蚀作用效应的加强、海沟的向陆迁移以及地震强度的增加。同时,无震脊或海山链俯冲时,其携带的具富集地球化学特征的物质不仅影响着地幔地球化学,也对弧及弧后火山熔岩化学产生明显影响,并对超俯冲地区的热液矿床的形成产生重要影响。最后,本文指出了我国有关无震脊或海山链俯冲的可能的研究方向包括黄岩海山链俯冲对吕宋岛弧的可能影响、印度洋无震脊俯冲对青藏高原局部地区的影响,有我国学者参与的IODP344航次的研究对象——科科斯脊俯冲对哥斯达黎加地震成因的效应以及位于西太平洋地区靠近俯冲带的一些无震脊等。
  • Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Physics, 1963, 41:863-870.
    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288):42-43.
    Sleep N H. Mantle plumes from top to bottom[J]. Earth-Science Reviews, 2006, 77: 231-271.
    White W M. Oceanic island basalts and mantle plumes: the geochemical perspective[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 133-160.
    Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth mantle[J]. Earth and Planetary Science Letters, 2003, 205: 295-308.
    Sleep N H. Hotspot volcanism and mantle plumes[J]. Annual Review of Earth and Planetary Sciences, 1992, 20: 19-43.
    Campbell I H. Testing the plume theory[J]. Chemical Geology, 2007, 241: 153-176.
    O'Neill C, Muller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168.
    Koppers A A P, Gowen M D, Colwell L E, et al. New40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion[J]. Geochemistry, Geophysics, Geosystems, 2011, 12, Q0AM02.
    Marsaglia K, Mann P, Hyatt R J, et al. Evaluating the influence of aseismic ridge subduction and accretion on detrital modes of forearc sandstone: an example from the Kronotsky Peninsula in the Kamchatka Forearc[J]. Lithos, 1999, 46: 17-42.
    Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes: New results from finite frequency tomography[J]. Geochemistry, Geophysics, Geosystems, 2006, 7, Q11007.
    Davies J H, Bunge H P. Are splash plumes the origin of minor hotspots[J]. Geology, 2006, 34: 349-352.
    Ito G, Lin J, Gable C W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galapagos pume-ridge system[J]. Journal of Geophysical Research, 1997, 102(B7): 15403-15417.
    Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and geochronology of Leg 130 basement lavas: Nature and origin of the Ontong Java Plateau, in Proceedings of the Ocean Drilling Program, Scientific Results[C]//Proceedings of the Ocean Driding Program, Scientific Result.College Station, 1993, 130:3-22.
    Coffin M F, Gahagan L M. Ontong Java and Kerguelen Plateaux: Cretaceous Icelands[J].Journal of Geological Society, 1995, 152: 1047-1052.
    Yan Q, Shi X. Geological comparative studies of Japan Arc System and Kyushu-Palau Arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121.
    Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research, 2012, 117, B08403.
    van Hunen J, van den Berg A P, Vlaar N J. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 2002, 352: 317-333.
    Vogt P R. Subduction and aseismic ridges[J]. Nature, 1973, 241: 189-191.
    Wolfe C J, Solomon S C, Laske G, et al. Mantle shear-wave velocity structure beneath the Hawaiian hotspot[J]. Science, 2009, 326: 1388-1391.
    Keller R A, Duncan R A, Fisk M R. Geochemistry and40Ar/39Ar geochronology of basalts from ODP Leg 145-North Pacific Transect[J]. ODP Scientific Results, 1995, 145: 333-344.
    Portnyagin M, Savelyev D, Hoernle K, et al. Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka[J]. Geology, 2008, 36: 903-906.
    Sharp W D, Clague D A. 50-Ma Initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313: 1281-1284.
    Tarduno J A. On the motion of Hawaii and other mantle plumes[J]. Chemical Geology, 2007, 241: 234-247.
    Tarduno J, Bunge H P, Sleep N, et al. The bent Hawaiian-Emperor hotspot track: inheriting the mantle wind[J]. Science, 2009, 324: 50-53.
    Cheng Q, Park K H, MacDougall J D, et al. Isotopic evidence for a hotspot origin of the Louisville Seamount Chain, in Seamounts, Islands, and Atolls[M]. Geophys Monogr Ser, 1987, 43, 283-296.
    Hawkins J W, Lonsdale P F, Batiza R. Petrologic evolution of the Louisville seamount chain, in Seamounts, Islands, and Atolls[M]. Geophys Monogr Ser, 1987, 43: 235-254.
    Geli L, Aslanian D, Olivet J L, et al. Location of Louisville hotspot and origin of Hollister Ridge: geophysical constraints[J]. Earth and Planetary Science Letters, 1998, 164: 31-40.
    Vlastelic I, Dosso L, Guillou H, et al. Geochemistry of the Hollister Ridge: relation with the Louisville hotspot and the Pacific-Antarctic Ridge[J]. Earth and Planetary Science Letters, 1998, 160: 777-793.
    Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Crustal intrusion beneath the Louisville hotspot track[J]. Earth and Planetary Science Letters, 2010, 289: 323-333.
    Koppers A A, Yamazaki T, Geldmacher J, et al. Louisville Seamount Trail: Implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots[C]. Integr Ocean Drill Program Prelim Rep, 2011, 30.
    鄢全树, 石学法.地幔柱(热点)-洋脊相互作用研究进展[J]. 海洋地质与第四纪地质, 2006, 26(5): 131-138.
    von Huene R, Ranero C R, Weinrebe W, et al. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos plate, and Central American volcanism[J]. Tectonics, 2000, 19(2):314-334.
    Werner R, Hoernle K, Barkckhausen U, et al. Geodynamic evolution of the Galapagos hot spot system(Central East Pacific) over the past 20 my: Constraints from morphology, geochemistry, and magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12), 1108.
    Walther C H E. The crustal structure of the Cocos Ridge off Costa Rica[J]. Journal of Geophysical Research, 2003, 108(B3):2136.
    Harpp K S, Wanless V D, Otto R H, et al. The Cocos and Carnegie Aseismic Ridges: a trace element record of long-term plume-spreading center interaction[J]. Journal of Petrology, 2005, 46: 109-133.
    Expedition 344 Scientists. Costa Rica Seismogenesis Project(CRISP-A2): sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone[C]. IODP Prel Rept, 2013:344.
    Hoernle K, van den Bogaard P, Werner R, et al. Missing history(16~71 Ma) of the Galapagos hotspot: Implications for the tectonic and biological evolution of the Americas[J]. Geology, 2002, 30: 795-798.
    Sallares V, Charvis P. Crustal thickness constraints on the geodynamic evolution of the Galapagos volcanic province[J]. Earth and Planetary Science Letters, 2003, 214: 545-559.
    Lonsdale P, Fornari D. Submarine geology of Malpelo Ridge, Panama basin[J]. Marine Geology, 1980, 36: 65-83.
    Marcaillou B, Charvis P, Collot J. Structure of the Malpelo Ridge(Colombia) from seismic and gravity modeling[J]. Marine Geophysical Researches, 2006, 27: 289-300.
    Hagen R A, Moberly R. Tectonic effects of a subducting aseismic ridge: the subduction of the Nazca ridge at the Peru trench[J]. Marine Geophysical Researches, 1994, 16: 145-161.
    Pilger R H, Handschumacher D W. The fixed-hotspot hypothesis and origin of the Easter-Salay Gomez-Nazca trace[J]. Geological Society of America Bulletin, 1981, 92: 437-446.
    Perez-Gussinye M, Lowry A R, Morgan J P, et al. Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry[J]. Geochemistry, Geophysics, Geosystems, 2007, 9, Q02003.
    Hampel A, Kukowski N, Bialas J, et al. Ridge subduction at an erosive margin: The collision zone of the Nazca Ridge in southern Peru[J]. Journal of Geophysical Research, 2004, 109, B02101.
    Sandwell D, Smith W H F. Gravity anomaly from Geosat and ERS-I altimetry, version 6.0[C]. Geological Data Center, Scripps Institution of Oceanography, La Jolla, California, 1995.
    von Huene R, Corvalan J, Fluch E R, et al. Tectonic control of the subducting Juan Fernandez Ridge on the Andean margin near Valparaiso, Chile[J]. Tectonics, 1997, 16(3): 474-488.
    Bouysee P, Westercamp D. Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc[J]. Tectonophysics, 1990, 175: 349-380.
    Peter G. Tectonic evolution of the eastern margin of the Caribbean region(Abstract)[J]. Geological Society of America Bulletin Abstract Programs, 1974, 6: 910.
    McCann W R, Sykes L R. Subduction of aseismic ridges beneath the Caribbean plate: implications for the tectonics and seismic potential of the northeastern Caribbean[J]. Journal of Geophysical Research, 1984, 89(B6): 4493-4519.
    Stein S, Engeln J, Wiens D, et al. Subduction seismicity and tectonics in the Lesser Antilles[J]. Journal of Geophysical Research, 1982, 87: 8642-8664.
    Courtillot V E, Besse J, Vandamme D, et al. Deccan flood basalts at the Cretaceous/Tertiary boundary[J]. Earth and Planetary Science Letters, 1986, 80: 361-374.
    Saunders A D, Storey M, Gibson I L, et al. Chemical and isotopic constraints on the origin of basalt from Ninetyeast Ridge: results from DSDP Legs 22 and 26 and ODP Leg 121[C]. Proceedings of the Ocean Drilling Program, Sci Results, 1991, 121: 559-590.
    Frey F A, Pringle M, Meleney P, et al. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses[J]. Earth and Planetary Science Letters, 2011, 303: 215-224.
    Curray J R, Munasinghe T. Origin of the Rajmahal Traps and the 85°E Ridge preliminary reconstructions of the trace of the Crozet hotspot[J]. Geology, 1991, 19: 1237-1240.
    Kent W, Saunders A D, Kempton P D, et al. Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin[C]. Geophysical Monograph, 1997, 100: 145-182.
    Chung W Y, Kanamori H. A mechanical model for plate deformation associated with aseismic ridge subduction in the New Hebrides arc[J]. Tectonophysics, 1978, 50: 29-40.
    Geist E L, Fisher M A, Scholl D W. Large-scale deformation associated with ridge subduction[J]. Geophysical Journal International, 1993, 115: 344-366.
    Gerya T V, Fossati D, Canetini C, et al. Dynamic effects of aseismic ridge subduction: numerical modeling[J]. European Journal of Mineralog, 2009, 21: 649-661.
    Rosenbaum G, Mo W. Tectonic and magmatic responses to the subduction of high bathymetric relief[J]. Gondwana Research, 2011, 19: 571-582.
    Nur A, Ben-Avraham Z B. Volcanic gaps due to oblique consumption of aseismic ridges[J]. Tectonophysics, 1983, 99: 355-362.
    Gutscher M A, Malavieille J, Lallemand S, et al. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision[J].Earth and Planetary Science Letters, 1999, 168: 255-270.
    von Huene R. When seamounts subduct[J]. Science, 2008, 321: 1165-1166.
    Watts A, Koppers A A P, Robinson D P. Seamount subduction and earthquakes[J]. Oceanography, 2010, 23: 106-113.
    Martinod J, Funiciello F, Faccenna C, et al. Dynamic effects of subducting ridges: insights from 3-D laboratory models[J]. Geophysical Journal International, 2005, 163: 1137-1150.
    Kelleher J, McCann W. Buoyant zones, great earthquakes, and some predictions[J]. Journal of Geophysical Research, 1976, 81: 4885-4896.
    Gutscher M A, Spakman W, Bijwaard H, et al. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin[J]. Tectonics, 2000, 19: 814-833.
    Cloos M. Lithospheric Buoyancy and Collisional Orogenesis-Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts[J]. Geological Society of America Bulletin, 1993, 105: 715-737.
    Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacific-type convergent margins: new insights from numerical modeling[J]. Physics of the Earth and Planetary Interiors, 2007, 163: 209-232.
    Wessel P, Sandwell D T, Kim S S. The global seamount census[J]. Oceanography, 2010, 23(1):24-33.
    Staudigel H, Clague D A. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions[J]. Oceanography, 2010, 23(1): 58-71.
    Nishizawa A, Kaneda K, Watanabe N, et al. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan trench[J]. Earth Planets Space, 2009, 61: e5-e8.
    Laursen J, Scholl D W, von Huene R. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[J]. Tectonics, 2002, 21(5):2-1-2-27.
    Staudigel H, Koopers A P, Plank T A, et al. Seamounts in the subduction factory[J]. Oceanography, 2010, 23(1): 176-181.
    Koppers A A P, Watts A B. Intraplate seamounts as a window into deep Earth processes[J]. Oceanography, 2010, 23: 42-57.
    Hanyu T, Tatsumi Y, Senda R, et al. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(2), Q0AC09.
    Ulrich M, Hémond C, Nonnotte P, et al. OIB/seamount recycling as a possible process for E-MORB genesis[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6), Q0AC19.
    Avdeiko G P. On possible continuation of the Hawaiian-Emperor chain in Kamchatka[C]. Initial reports of the Deep Sea Drilling Project, 1980, 55: 851-854.
    Steinberger B, Gaina C. Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea[J]. Geology, 2007, 35: 407-410.
    Lagoe M B, Harun N T, Mann P. Effects of subduction of the Hawaiian-Emperor Seamount chain on the Kamchatka convergent margin: 2. Structural and stratigraphic effects on the forearc basin[C]. EOS Transactions, American Geophysical Union, Fall Meetng, 1995, F538.
    Kepezhinskas P, Defant M J, Mann P. Effects of subduction of the Hawaiian-Emperor Seamount chain on the Kamchatka convergent margin: 1. Geochemical effects on the volcanic arc[C]. Transactions, American Geophysical Union, Fall Meetng, 1995, F538.
    Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419.
    Huang S, Frey F A. Recycled oceanic crust in the Hawaiian plume: evidence from temporal geochemical variations within the Koolau Shield[J]. Contributions to Mineralogy and Petrology, 2005, 149: 556-575.
    Yang H J, Frey F A, Clague D A. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu volcanics[J]. Journal of Petrology, 2003, 44: 603-627.
    Bianco T A, Ito G, van Hunen J, et al. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(11), Q11003.
    Hofmann A W. Mantle geochemistry: the massage from oceanic volcanism[J]. Nature, 1997, 385: 219-229.
    Yan Quanshu, Castillo P, Shi Xuefa. Geochemistry of basaltic lavas from the southern Lau Basin: input of compositionally variable subduction components[J]. International Geology Review, 2012, 54(12): 1456-1474.
    Turner S P, Hawkesworth C J, Rogers N, et al.238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4855-4884.
    Hergt J M, Woodhead J D. A critical evaluation of models for Lau-Tonga arc-backarc basin magmatic evolution[J]. Chemical Geology, 2007, 245: 9-44.
    Regelous M, Gamble J A, Turner S P. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas[J]. Chemical Geology, 2010, 273: 46-54.
    Regelous M, Turner S, Falloon T J, et al. Mantle dynamics and mantle melting beneath Niuafo'ou Island and the northern Lau back-arc basin[J]. Contributions to Mineralogy and Petrology, 2008, 156: 103-118.
    Tian L, Castillo P R, Hilton D R, et al. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas: Implications for the composition and dynamics of the back-arc basin mantle[J]. Journal of Geophysical Research, 2011.
    Lupton J E, Arculus R J, Evans L J, et al. Mantle hotspot neon in basalts from the Northwest Lau Back-arc Basin[J]. Geophysical Research Letters, 2012, 39, L08308.
    Ranero C R, von Huene R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404: 748-752.
    Gans P B, Macmillan I, Alvarado-Inundi G, et al. Neogene evolution of the Costa Rican arc[J]. Geological Society of America Bulletin Abstract Programs, 2002. 114: 224-12.
    Abratis M, Wörner G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm[J]. Geology, 2001, 29(2): 127-130.
    Hoernle K, Abt D L, Fischer K M, et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua[J]. Nature, 2008, 451: 1094-1098.
    Hoernle K, Hauff F, van den Bogaard P. 70 my history(139-69 Ma) for the Caribbean large igneous province[J]. Geology, 2004, 32: 697-700.
    Bourdon E, Eissen J P, Gutscher M A, et al. Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case(South America) [J]. Earth and Planetary Science Letters, 2003, 205: 123-138.
    Spence W, Mendoza C, Engdahl E R, et al. Seismic subduction of the Nazca Ridge as shown by the 1996-97 Peru earthquakes[J]. Pure and Applied Geophysics 1999, 154: 753-776.
    Swenson J, Beck S. Source characteristics of the 12 November 1996 Mw 7. 7 Peru subduction zone earthquake[J]. Pure and Applied Geophysics, 1999, 154: 731-751.
    Yañez G A, Ranero C R, von Huene R. et al. Magnetic anomaly interpretation across the southern central Andes(32°-34°S): the role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin[J]. Journal of Geophysical Research, 2001, 106: 6325-6345.
    Gahalaut V K, Kundu B. Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes[J]. Gondwana Research, 2012, 21: 1080-1088.
    Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. Journal of Geophysical Research, 2006, 111(B02401).
    Mahoney J J, Duncan R A, McCormick G R, et al. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: Implications for the Reunion Hotspot and Deccan Traps[J]. Earth and Planetary Science Letters, 2002, 203: 295-310.
    Duncan R A. The volcanic record of the Reunion hotspot[C]//Proc. ODP Sci. Results. 1990, 115: 3-10.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
    Niu Y, O'Hara M. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108(B4): 2209.
    Rosenbaum G, Giles D, Betts P, et al. Formation of Ore Deposits Triggered by Aseismic Ridge Subduction[C]. American Geophysical Union, 2005.
    Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 2005, 239: 18-32.
    孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩金矿成矿[J]. 中国科学D辑:地球科学, 2010, 40(2): 127-137.
    石学法, 鄢全树. 南海新生代岩浆活动的地球化学特征及其构造意义[J]. 海洋地质与第四纪地质, 2011, 31(2):59-72.
    鄢全树, 石学法.海南地幔柱与南海形成演化[J]. 高校地质学报, 2007, 27(2): 311-322.
    Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Major element, trace element, and Sr-Nd-Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China(Series D), 2008, 51(4): 550-566.
    鄢全树, 石学法.南海盆海山火山碎屑岩的发现及其地质意义[J].岩石学报, 2009, 25(12): 3327-3334.
    Castillo P R. Origin and geodynamic implication of the Dupal isotopic anomaly in volcanic rocks from the Philippine island arcs[J]. Geology, 1996, 24: 271-274.
    Defant M J, Jacques D, Maury R C, et al. Geochemistry and tectonic setting of the Luzon arc, Philippines[J]. Geological Society of America Bulletin, 1989, 101: 663-672.
    李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究:来自国际综合大洋钻探344航次的报告[J].地球科学进展, 2013, 28(6): 368-376.
    Li Zhengxiang, Li Xianhua. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
  • 加载中
计量
  • 文章访问数:  1515
  • HTML全文浏览量:  15
  • PDF下载量:  1766
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-13
  • 修回日期:  2013-10-16

目录

    /

    返回文章
    返回