Numerical study on the linear/nonlinear characteristics and the impacts of continental shelf effects of the tsunami waves propagating
-
摘要: 浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100 m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100 m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100 m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。Abstract: Shallow water equation is widely used in tsunami early warning and researches,however,it is necessary to know the application scope and calculation efficiency of linear and nonlinear shallow water equations under different topographical and bathymetrical conditions. This paper mainly studied the linear and nonlinear characteristics of tsunami waves propagating in the South China Sea and the East China Sea with the continental shelf effects by using tsunami numerical forecasting model which were developed based on shallow water equations. Propagation characteristics of tsunami waves in the deep water show strong linear features(A/H<<1). The simulation of tsunami wave amplitude has high precision and efficiency under this linear system,whereas the characteristics of weak nonlinear and dispersion have small effect on the simulation of tsunami that can be ignored. Due to the variation of seafloor gradient and roughness effect,when tsunami waves propagates to the shallow water continental shelf,nonlinear effect on the waves will travel and accumulate rapidly. It shows a significant difference comparing to the tsunami wave simulations that uses linear and nonlinear shallow water equations. The results showed that in the South China Sea where the water depth is lower than 100 m,the nonlinear effects on waves following the first wave of a tsunami were evident and different but a small effect on the first wave. Hence,to use the linear system simulating tsunami wave amplitudes can meet the tsunami early warning requirements without the consideration of tsunami inundation. In the East China Sea,because of the continental shelf,it is critical to consider nonlinear characteristics since first wave and later phase wave of a tsunami were significant different which were simulated by linear and nonlinear tsunami numerical models respectively. This paper also highlighted the numerical comparison study of bottom friction term effect on tsunami initial wave amplitude. The results showed that bottom friction effected the area only with water depth less than 100 m. Finally,we preliminarily analyzed the effect of continental shelf width on maximum tsunami amplitude based on the sensitivity tests. It can be summarized when tsunami waves propagate and deform at continental shelf,the maximum tsunami amplitude must be weakened by the eastern China Sea continental shelf is not correct. Whether the tsunami amplitude will enlarge or reduce is mainly depends on the continental shelf width and the depth of outer margin of the continental shelf.
-
文圣长, 余宙文.海浪理论与计算原理[M].北京:科学出版社, 1985: 31-36. 冯士筰, 李凤岐, 李少菁.海洋科学导论[M].北京:高等教育出版社, 1985: 182-189. Stake K. Linear and Nonlinear Computations of the 1992 Nicaragua Earthquake Tsunami[J].Pure and Applied Geophysicsm, 1995, 144(3/4):455-470. Yeh H, Liu P L F, Synolakis C.Long-wave runup models:Friday Harbor, USA, 12-17 September 1995[M].World Scientific, 1996. Geist E L. Local tsunami and earthquake source parameters[J]. Adv Geophys, 1998, 39:117-209. Houston J R, Butler H L.Numerical Simulations of the 1964 Alaskan Tsunami[C]//Proceedings of 19th Conference on Coastal Engineering.Houston, 1984:815—830. Liu Yingchun, Shi Yaolin, David A, et al. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea[J].Acta Geotechnica, 2009, 4:129-137. Xu Zhigang. The all-source Green's function and its applications to tsunami problems[J].Science of Tsunami Hazards, 2007, 26(1):59-69. Harold G, Loomis. Tsunami prediction using the reciprocal property of Green's function[J].Marine geodesy, 1979, 2(1):27-39. Wei Y, Cheung K F, Curtis G D, et al. Inverse algorithm for tsunami forecasts[J]. Journal of waterway, port, coastal, and ocean engineering, 2003, 129(2): 60-69. Wu T R, Ho T C. High resolution tsunami inversion for 2010 Chile earthquake[J].Natural hazards and earth system sciences, 2011, 11:3251-3261. 孙美仙, 丁照东, 赵联大, 等. 基于GIS的海啸预警信息系统集成框架[J].海洋学研究, 2009, 27(4):108-116. Hammack J L, Segur H. Model1ing criteria for long water waves[J].J Fluid Mech, 1978, 84(2):359-373. Zahibo N, Pelinovsky E, Talipova T, et al. Analytical and numerical study of nonlinear effect at tsunami modeling[J]. Applied Mathematics and Computation, 2006, 174:795-809. 王培涛, 于福江, 赵联大, 等. 越洋海啸数值模拟及其对我国沿海的影响分析[J]. 海洋学报, 2012, 34(2): 39-47. 邹振轩, 傅建武, 朱元清, 等.华东沿海地震海啸模拟[J].地震, 2011, 31(10):118-124. 董非非, 朱元清, 姜辉, 等.东海潜在地震海啸特点[J].内陆地震, 2009, 23(4):490-498. 刘双庆, 朱元清, 梁明剑, 等.冲绳海槽地区地震潜在海啸对中国东南沿海的影响研究[J].地震学报, 2012, 34(3):283-295. 潘文亮, 王盛安, 蔡树群.南海潜在海啸灾害的数值模拟[J].热带海洋学报, 2009, 28(6):7-14. 刘迎春, 石耀霖, 刘海龄. 中国南海相邻海域地震海啸数值模拟[C]//中国地球物理学会第22届年会论文集.成都, 2006. Gutenberg B. Tsunamis and earthquakes[J].Bull Seismic Soc Amer, 1939, 29(4):517-526. Hayir A. The effects of variable speeds of a submarine block slide on near-field tsunami amplitudes[J].Ocean Engineering, 2003, 30: 2329-2342. 王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J].地球物理学报, 2012, 55(9): 3088-3096. 薛艳, 朱元清, 刘双庆, 等.地震海啸的激发与传播[J].中国地震, 2010, 26(3):283-295. Aida I. Numerical experiments for the tsunami propagation the 1954 Niigata tsunami and 1968 Tokachi-oki tsunami[J].Bulletin of the earthquake Research Institute, 1969, 47:498-512. 刘双庆.海啸近场特征与海啸触发源之间的定性定量关系分析[D].兰州:中国地震局兰州地震研究所, 2008. 武粤, 孟小红, 李淑玲.小波分析及其在我国地球物理学研究中的应用进展[J].地球物理学进展, 2012, 27(2):750-760. Wang X M, Liu P L F. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian ocean tsunami[J]. J Hydraulic Res, 2006, 44(2):147-154. Wang X M, Liu P L F. Numerical simulations of the 2004 Indian ocean tsunamis coastal effects[J].Journal of Earthquake and Tsunami, 2007, 1(3):273-297.
计量
- 文章访问数: 1734
- HTML全文浏览量: 3
- PDF下载量: 985
- 被引次数: 0