留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用

赵美训 于蒙 张海龙 陶舒琴

赵美训, 于蒙, 张海龙, 陶舒琴. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用[J]. 海洋学报, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006
引用本文: 赵美训, 于蒙, 张海龙, 陶舒琴. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用[J]. 海洋学报, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006
Zhao Meixun, Yu Meng, Zhang Hailong, Tao Shuqin. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Haiyang Xuebao, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006
Citation: Zhao Meixun, Yu Meng, Zhang Hailong, Tao Shuqin. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Haiyang Xuebao, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006

单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用

doi: 10.3969/j.issn.0253-4193.2014.04.006
基金项目: 科技部“海洋科学创新方法研究”项目(2011IM010700);国家重点基础研究发展计划“我国陆架海生态环境演变过程、机制及未来变化趋势预测”(2010CB428901);国家基金委重大国际合作研究项目“人类活动和气候变化对我国边缘海有机碳汇影响的有机分子记录”(41020164005)。

Applications of compound-specific radiocarbon analysis in oceanography and environmental science

  • 摘要: 单体分子放射性碳同位素分析(CSRA)是近十几年来发展起来的一项新兴的分析手段,将所需的单体分子(生物标志物)从复杂的环境样品基质中分离并富集,再进行加速质谱仪(AMS)的放射性碳(14C)测定。这种分子水平的放射性碳同位素测定技术能够揭示出总有机质同位素组成的异质性,为解释有机碳的来源、迁移和转化等提供了新型的手段。在海洋科学研究中,单体分子放射性碳同位素分析已应用于计算碳在全球各储库的逗留时间并揭示和定量估算化石源有机碳的输入、指示沉积物的搬运过程、示踪微生物的代谢途径、改进沉积物年代学等;在环境科学研究中,单体分子放射性碳同位素分析可用于有毒物质(如多环芳烃)的源解析,示踪有机污染环境中微生物的代谢途径等。伴随着单体分子分离技术的改进及AMS灵敏度的提高,CSRA技术的应用会更加广泛。
  • 王旭晨, 戴民汉. 天然放射性碳同位素在海洋有机地球化学中的应用[J]. 地球科学进展, 2002, 17(3): 348—354.
    Eglinton T I, Aluwihare L I, Bauer J E, et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating[J]. Analytical Chemistry, 1996, 68(5): 904—912.
    Eglinton T I, Benitez-Nelson B C, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997, 277(5327): 796—799.
    Pearson A, Eglinton T I. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific Δ14C & δ13C data[J]. Organic Geochemistry, 2000, 31(2000): 1103—1116.
    Drenzek N J, Montluon D B, Yunker M B, et al. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular13C and14C measurements[J]. Marine Chemistry, 2007, 103(1): 146—162.
    Drenzek N J, Hughen K A, Montluon D B, et al. A new look at old carbon in active margin sediments[J]. Geology, 2009, 37(3): 239—242.
    Ohkouchi N, Eglinton T I, Keigwin L D, et al. Spatial and temporal offsets between proxy records in a sediment drift[J]. Science, 2002, 298(5596): 1224—1227.
    Mollenhauer G, Eglinton T, Ohkouchi N, et al. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2157—2171.
    Mollenhauer G, Kienast M, Lamy F, et al. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments[J]. Paleoceanography, 2005, 20(1): PA1016.
    Pearson A, Eglinton T I, McNichol A P. An organic tracer for surface ocean radiocarbon[J]. Paleoceanography, 2000, 15(5): 541—550.
    Pearson A, McNichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using Compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3123—3137.
    Petsch S, Eglinton T, Edwards K. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering[J]. Science, 2001, 292(5519): 1127—1131.
    Slater G F, White H K, Eglinton T I, et al. Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis[J]. Environmental Science & Technology, 2005, 39(8): 2552—2558.
    Ohkouchi N, Eglinton T I, Hayes J M. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies[J]. Radiocarbon, 2003, 45(1): 17—24.
    Smittenberg R H, Hopmans E C, Schouten S, et al. Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada[J]. Paleoceanography, 2004, 19(2): PA2012.
    Uchida M, Shibata Y, Kawamura K, et al. Compound-specific radiocarbon ages of fatty acids in marine sediments from the western North Pacific[J]. Radiocarbon, 2006, 43(2B): 949—956.
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2): 81—115.
    Gordon E S, Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2359—2375.
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean ? [J]. Organic Geochemistry, 1997, 27(5/6): 195—212.
    Marret F, Scourse J D, Versteegh G, et al. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation[J]. Journal of Quaternary Science, 2001, 16(8): 761—766.
    Weijers J W H, Schouten S, Schefu E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20 000 year sediment record from the Congo deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 119—132.
    Bourbonniere R A, Meyers P A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie[J]. Limnology and Oceanography, 1996, 41(2): 352—359.
    Xing L, Zhang H, Yuan Z, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106—1115.
    Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1): 107—116.
    Blair N E, Leithold E L, Ford S T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 63—73.
    Blair N E, Leithold E L, Aller R C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems[J]. Marine Chemistry, 2004, 92(1): 141—156.
    Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972): 336—339.
    Goi M A, Yunker M B, Macdonald R W, et al. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean[J]. Marine Chemistry, 2005, 93(1): 53—73.
    Komada T, Druffel E R M. Trumbore S E. Oceanic export of relict carbon by small mountainous rivers[J]. Geophysical Research Letters, 2004, 31(7): L07504.
    Komada T, Druffel E R M, Hwang J. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2017.
    Feng X, Benitez-Nelson B C, Montluon D B, et al. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 14—30.
    Keigwin L D. The little ice age and medieval warm period in the Sargasso Sea[J]. Science, 1996, 274(5292): 1503—1508.
    Mollenhauer G, Eglinton T I. Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments[J]. Limnology and oceanography, 2007, 52(2): 558—576.
    Mollenhauer G, McManus J F, Benthien A, et al. Rapid lateral particle transport in the Argentine Basin: Molecular 14C and 230Thxs evidence[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2006, 53(7): 1224—1243.
    Kusch S, Eglinton T I, Mix A C, et al. Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera[J]. Earth and Planetary Science Letters, 2010, 290(3): 340—350.
    Ingalls A E, Pearson A. Compound-Specific Radiocarbon Analysis[J]. Oceanography, 2005, 18(3): 18—31.
    Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409: 507—510.
    Schouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences, 2000, 97(26): 14421—14426.
    Sinninghe D J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68(6): 2997—3002.
    Hoefs M J L, Schouten S, De Leeuw J W, et al. Ether lipids of planktonic archaea in the marine water column[J]. Applied and Environmental Microbiology, 1997, 63(8): 3090—3095.
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293(5527): 92—95.
    Wuchter C, Schouten S, Boschker H T S, et al. Bicarbonate uptake by marine Crenarchaeota[J]. FEMS microbiology letters, 2003, 219(2): 203—207.
    Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5): 2303—2309.
    Knneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543—546.
    Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683—14688.
    Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(4): 520—536.
    Ouverney C C, Fuhrman J A. Marine planktonic Archaea take up amino acids[J]. Applied and Environmental Microbiology, 2000, 66(11): 4829—4833.
    Ingalls A E, Shah S R, Hansman R L, et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6442—6447.
    Hajdas I. Applications of Radiocarbon Dating Method[J]. Radiocarbon, 2009, 51(1): 79—90.
    Olsson I. Accuracy and precision in sediment chronology[J]. Hydrobiologia, 1991, 214(1): 25—34.
    Stuiver M, Polach H A. Discussion: reporting of C-14 data[J]. Radiocarbon, 1977, 19(3): 355—363.
    Uchikawa J, Popp B N, Schoonmaker J E, et al. Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology[J]. Journal of Paleolimnology, 2008, 39(1): 43—60.
    Mollenhauer G, Rethemeyer J. Compound-specific radiocarbon analysis—Analytical challenges and applications[J]. IOP Confererence Series: Earth and Environmental Science 2009, 5(1): 012006.
    Pearson A, McNichol A P, Schneider R J, et al. Microscale AMS 14C measurement at NOSAMS[J]. Radiocarbon, 1998, 40(1): 61—75.
    Suntia R S, Pearson A. Ultra-microscale (5~25 μg C) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks[J]. Radiocarbon, 2007, 49(1): 69—82.
    Ohkouchi N, Eglinton T I. Compound-specific radiocarbon dating of Ross Sea sediments: A prospect for constructing chronologies in high-latitude oceanic sediments[J]. Quaternary Geochronology, 2008, 3(3): 235—243.
    Uchida M, Shibata Y, Ohkushi K, et al. Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments[J]. Chemical Geology, 2005, 218(1/2): 73—89.
    Zencak Z, Klanova J, Holoubek I, et al. Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis[J]. Environmental Science & Technology, 2007, 41(11): 3850—3855.
    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489—515.
    Mandalakis M, Gustafsson , Reddy C M, et al. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area[J]. Environmental Science & Technology, 2004, 38(20): 5344—5349.
    Currie L A, Eglinton T I, Benner Jr B A, et al. Radiocarbon "dating" of individual chemical compounds in atmospheric aerosol: First results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 123(1): 475—486.
    Reddy C M, Pearson A, Xu L, et al. Radiocarbon as a tool to apportion the sources of Polycyclic Aromatic Hydrocarbons and Black Carbon in environmental samples[J]. Environmental Science & Technology, 2002, 36(8): 1774—1782.
    Sheesley R J, Krus M, Krecl P, et al. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis[J]. Atmospheric Chemistry and Physics, 2009, 9: 3347—3356.
    Mandalakis M, Gustafsson , Alsberg T, et al. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites[J]. Environmental Science & Technology, 2005, 39(9): 2976—2982.
    Kumata H, Uchida M, Sakuma E, et al. Compound class specific 14C analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1. 1 aerosols from residential areas of suburban Tokyo[J]. Environmental Science & Technology, 2006, 40(11): 3474—3480.
    Kanke H, Uchida M, Okuda T, et al. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 545—554.
    Utkina N K, Denisenko V A, Virovaya M V, et al. Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi[J]. Journal of Natural Products, 2002, 65(8): 1213—1215.
    Kuniyoshi M, Yamada K, Higa T. A biologically active diphenyl ether from the green alga Cladophora fascicularis[J]. Experientia, 1985, 41(4): 523—524.
    Kierkegaard A, Bignert A, Sellstrm U, et al. Polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in pike from Swedish waters with emphasis on temporal trends, 1967—2000[J]. Environmental Pollution, 2004, 130(2): 187—198.
    Reddy C M, Xu L, Eglinton T I, et al. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds[J]. Environmental Pollution, 2002, 120(2): 163—168.
    Reddy C M, Xu L, ONeil G W, et al. Radiocarbon evidence for a naturally produced, bioaccumulating halogenated organic compound[J]. Environmental Science & Technology, 2004, 38(7): 1992—1997.
    Teuten E L, Xu L, Reddy C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711): 917—920.
    Guitart C, Slattery M, Ankisetty S, et al. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge-cyanobacteria associations[J]. Marine Pollution Bulletin, 2011, 62(3): 631—636.
    Teuten E L, Reddy C M. Halogenated organic compounds in archived whale oil: a pre-industrial record[J]. Environmental Pollution, 2007, 145(3): 668—671.
    Slater G F, Nelson R K, Kile B M, et al. Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis[J]. Organic Geochemistry, 2006, 37(9): 981—989.
    Harvey H R, Fallon R D, Patton J S. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 795—804.
    Wakeham S G, McNichol A P, Kostka J E, et al. Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1761—1771.
    Cowie B R, Greenberg B M, Slater G F. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA[J]. Environmental Science & Technology, 2010, 44(7): 2322—2327.
    Pearson A, Seewald J S, Eglinton T I. Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5477—5486.
    Ball G I, Xu L, McNichol A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses[J]. Journal of Chromatography A, 2012, 1220: 122—131.
    Santos G M, Southon J R, Drenzek N J, et al. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS[J]. Radiocarbon, 2010, 52: 1322—1335.
    McIntyre C P, Galutschek E, Roberts M L, et al. A continuous-flow gas chromatography 14C accelerator mass spectrometry system[J]. Radiocarbon, 2010, 52: 295—300.
    Uchida M, Shibata Y, Yoneda M, et al. Technical progress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 313—317.
    Wang X C, Li A C. Preservation of black carbon in the shelf sediments of the East China Sea[J]. Chinese Science Bulletin, 2007, 52(22): 3155—3161.
    Kao S, Dai M, Wei K, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation[J]. Paleoceanography, 2008, 23(2): PA2207.
  • 加载中
计量
  • 文章访问数:  1798
  • HTML全文浏览量:  9
  • PDF下载量:  2716
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-03
  • 修回日期:  2013-08-19

目录

    /

    返回文章
    返回