留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响

徐雪梅 翟惟东 吴金浩

徐雪梅, 翟惟东, 吴金浩. 急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响[J]. 海洋学报, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012
引用本文: 徐雪梅, 翟惟东, 吴金浩. 急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响[J]. 海洋学报, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012
XU Xuemei, ZHAI Weidong, WU Jinhao. Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum[J]. Haiyang Xuebao, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012
Citation: XU Xuemei, ZHAI Weidong, WU Jinhao. Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum[J]. Haiyang Xuebao, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012

急性CO2酸化对菲律宾蛤仔钙壳和呼吸作用的影响

doi: 10.3969/j.issn.0253-4193.2013.05.012
基金项目: 国家重点基础研究发展计划(2009CB421204);国家自然科学基金项目(41206060;41276061);国家海洋局北黄海海-气二氧化碳交换通量试点性监测项目。

Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum

  • 摘要: 基于渤海表层典型的碳酸盐系统,通过实验室密闭培养实验,分析急性CO2酸化条件对菲律宾蛤仔(Ruditapes philippinarum) CaCO3形成速率(G)和CO2呼吸速率(RC)的影响,以探讨局部海域CO2酸化的底层海水在潮流或者风海流等因素的驱动下,脉冲式影响贝类栖息地时养殖贝类可能的响应。结果表明,菲律宾蛤仔在急性CO2酸化条件下发生轻微的钙壳溶解和显著的呼吸抑制。CO2酸化和菲律宾蛤仔的呼吸作用共同驱动钙壳溶解,溶解速率随Ω文石下降而升高,G(μmol/(FWg·h))=0.14 × Ω文石-0.49 (n=12, r=0.95, p<0.01)。活体菲律宾蛤仔钙壳保持稳定的Ω文石临界值为3.5,而在Ω文石=1.0的条件下,每天溶解的钙壳相当于贝壳总重的2‰。相较于钙壳溶解,Ω文石改变对菲律宾蛤仔呼吸作用的影响更大,RC(μmol/(FWg·h))=0.27 × Ω文石+0.90 (n =12, r=0.82, p<0.01)。由于呼吸代谢决定了摄食等各种耗能行为的效率,因此本研究的结果表明,尽管菲律宾蛤仔可以通过摄食等自身调节机制来抵御造成钙壳溶解的环境胁迫,然而这一机制本身就可能受到酸化环境的不良影响。
  • Le Quéré C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geoscience, 2009, 2: 831—836.
    Khatiwala S. Fast spin up of ocean biogeochemical models using matrix-free Newton-Krylov[J]. Ocean Modelling, 2008, 23: 121—129.
    Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 2008, 65: 414—432.
    Burns W C G. Anthropogenic carbon dioxide emissions and ocean acidification: The potential impacts on ocean biodiversity[A]//Robert A. Askins, Glenn D. Dreyer, Gerald R. Visgilio, Diana M. Whitelaw. Saving Biological Diversity[C]. Berlin: Springer Science and Business Media, 2008:187—202.
    Shamberger K E F, Feely R A, Sabine C L, et al. Calcification and organic production on a Hawaiian coral reef[J]. Marine Chemistry, 2011, 127: 64—75.
    Pelletier G J, Lewis E, Wallace D W R. CO2SYS.XLS: A calculator for the CO2 system in seawater for Microsoft Excel/VBA. Version 16. Olympia (Washington): Washington State Department of Ecology, 2011 (available at : http://www.ecy.wa.gov/programs/eap/models.html).
    Gao K S, Aruga Y, Asada K, et al. Calcification in the articulated coralline alga Carollina pilulifera, with special reference to the effect of elevated CO2 concentration[J]. Marine Biology, 1993, 117: 129—132.
    Zeebe R E, Zachos J C, Caldeira K, et al. Carbon emissions and acidification[J]. Science, 2008, 321: 51—52.
    Hall-Spencer J M, Rodolfo-Metalpa R, Martin S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification[J]. Nature, 2008, 454: 96—99.
    Talmage S C, Gobler C J. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves[J]. PloS ONE, 2011, 6(10): e26941. doi: 10.1371/journal.pone.0026941
    Bibby R, Cleall-Harding P, Rundle S, et al. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea[J]. Biology Letters, 2007, 3: 699—701.
    Baumann H, Talmage S C, Gobler C J. Reduced early life growth and survival in a fish indirect response to increased carbon dioxide[J]. Nature Climate Change, 2012, 2: 38—41.
    Munday P L, Dixson D L, McCormick M I, et al. Replenishment of fish populations is threatened by ocean acidification[J]. Proceeding of the National Academy of Sciences of the United States of America, 2010, 107: 12930—12934.
    Domenici P, Allan B, McCormick M I, et al. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish[J]. Biology Letters, 2012, 8: 78—81.
    Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365.
    Kleypas J A, Feely R A, Fabry V J. et al. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research[R]. Boulder, Colorado: Institute for the Study of Society and Environment (ISSE) of the University Corporation for Atmospheric Research (UCAR), 2006, 1—88.
    Kelly R P, Foley M M, Fisher W S, et al. Mitigating local causes of ocean acidification with existing laws[J]. Science, 2011, 332: 1036—1037.
    Gruber N, Hauri C, Lachkar Z, et al. Rapid progression of ocean acidification in the California current system[J]. Science, 2012, 337: 220—223.
    翟惟东, 赵化德, 郑楠, 等. 2011年夏季渤海西北部、北部近岸海域的底层耗氧与酸化[J]. 科学通报, 2012, 57(9): 753—758.
    Zhai W D, Zheng N, Huo C, et al. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes[J]. Biogeosciences discussion, 2013, 10: 3079—3120.
    Dickson A G. The development of the alkalinity concept in marine chemistry[J]. Marine Chemistry, 1992, 40: 49—63.
    Gazeau F, Quiblier C, Jansen J M, et al. Impacts of elevated CO2 on shellfish calcification[J]. Geophysical Research Letters, 2007, 34: L07603, doi: 10.1029/2006GL028554.
    Smith S V, Key G S. Carbon dioxide and metabolism in marine environments[J]. Limnology and Oceanography, 1975, 20: 493—495.
    Fraga F, Ríos A F, Pérez F F,et al. Theoretical limits of oxygen: carbon and oxygen: nitrogen ratios during photosynthesis and mineralization of organic matter in the sea[J]. Scientia Marina, 1998, 62(1/2):161—168.
    刘升发, 范德江, 颜文涛, 等. 菲律宾蛤仔壳体和湿重生长率及影响因素浅析[J]. 海洋科学进展, 2008, 26(1): 82—89.
    郭永禄, 任一平, 杨汉斌. 胶州湾菲律宾蛤仔生长特征研究[J]. 中国海洋大学学报, 2005, 35 (5): 779—784.
    刘升发, 范德江, 石学法, 等. 菲律宾蛤仔壳体生长过程中Ca, Mg, Sr, Mn和Fe元素富集规律研究[J]. 海洋通报, 2008, 27(2): 43—51.
    唐敏, 石安静. 贝类钙代谢研究概况[J]. 水产学报, 2000, 24(1): 86—91.
    Millero F J, Graham T B, Huang F, et al. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature[J]. Marine Chemistry, 2006, 100: 80—94.
    Dickson A G. Standard potential of the reaction: AgCl(s)+1/2 H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO-4 in synthetic sea water from 273.15 to 318.15 K[J]. Journal of Chemical Thermodynamics, 1990, 22: 113—127.
    Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science, 1983, 283: 780—799.
    Waldbusser G G, Steenson R A, Green M A. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy[J]. Journal of Shellfish Research, 2011, 30(3): 659—669.
    Yamamoto S, Kayanne H, Terai M, et al. Threshold of carbonate saturation state determined by CO2 control experiment[J]. Biogeosciences, 2012, 9: 1441—1450.
    Suzuki A, Nakamori T, Kayanne H. The mechanism of production enhancement in coral reef carbonate system: model and empirical results[J]. Sedimentary Geology, 1995, 99: 259—280.
    Michaelidis B, Ouzounis C, Paleras A,et al. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis[J]. Marine Ecology Progress Series, 2005, 293: 109—118.
    沈同, 王镜岩. 生物化学[M]. 第2版. 北京: 高等教育出版社, 1991:1—1090.
  • 加载中
计量
  • 文章访问数:  1464
  • HTML全文浏览量:  33
  • PDF下载量:  1526
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-19

目录

    /

    返回文章
    返回