留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

veKdv方程的若干系数在南海北部的地理分布特征及其季节变化分析

廖光洪 黄韦艮 袁耀初 徐晓华 杨成浩 王惠群 陈洪

廖光洪, 黄韦艮, 袁耀初, 徐晓华, 杨成浩, 王惠群, 陈洪. veKdv方程的若干系数在南海北部的地理分布特征及其季节变化分析[J]. 海洋学报, 2013, 35(5): 46-58. doi: 10.3969/j.issn.0253-4193.2013.05.005
引用本文: 廖光洪, 黄韦艮, 袁耀初, 徐晓华, 杨成浩, 王惠群, 陈洪. veKdv方程的若干系数在南海北部的地理分布特征及其季节变化分析[J]. 海洋学报, 2013, 35(5): 46-58. doi: 10.3969/j.issn.0253-4193.2013.05.005
LIAO Guanghong, HUANG Weigen, YUAN Yaochu, XU Xiaohua, YANG Chenghao, WANG Huiqun, CHEN Hong. Analysis of geographical and seasonal variability of the variable-coefficients extended Korteweg-de Vries equation in the northern South China Sea[J]. Haiyang Xuebao, 2013, 35(5): 46-58. doi: 10.3969/j.issn.0253-4193.2013.05.005
Citation: LIAO Guanghong, HUANG Weigen, YUAN Yaochu, XU Xiaohua, YANG Chenghao, WANG Huiqun, CHEN Hong. Analysis of geographical and seasonal variability of the variable-coefficients extended Korteweg-de Vries equation in the northern South China Sea[J]. Haiyang Xuebao, 2013, 35(5): 46-58. doi: 10.3969/j.issn.0253-4193.2013.05.005

veKdv方程的若干系数在南海北部的地理分布特征及其季节变化分析

doi: 10.3969/j.issn.0253-4193.2013.05.005
基金项目: 973计划项目(2011CB403503,2012CB955601);国家海洋局第二海洋研究所基本科研业务费专项(JG1302,JG1009);国家自然科学基金(41376033);全球变化与海气相互作用专项;科技部国际合作(2006DFB21630)。

Analysis of geographical and seasonal variability of the variable-coefficients extended Korteweg-de Vries equation in the northern South China Sea

  • 摘要: 应用中国近海及邻近海域海洋再分析资料(简称CORA)研究南海北部第一模态内波场运动学参数的地理分布特征及其季节变化。首先分析了Brunt-Väisälä频率的统计特征;其次,基于弱非线性变系数扩展Kortewed-de Vries (veKdv)方程模型,计算了它的输入系数,即线性长波相速度,平方和立方非线性系数和频散系数,这些参数可用于定性评估内孤立波传播可能的极性,内孤立波的形态,幅度限制以及传播速度等。分析结果表明,南海北部季节性密度跃层从2月开始出现,最大浮力频率约在20 m。它在6—7月达到最强,自8月开始减弱,在10月消退。另一密度跃层出现在8—11月,最大浮力频率约在80 m,冬季大致在120 m。季节性密度跃层在4—9月十分明显,而8—10月双跃层现象显著,冬季仅出现较弱的第二密度跃层。在1—3月和10—12月海盆深水区最大Brunt-Väisälä频率值要大于陆架浅水区;而在5—9月情况则相反。Brunt-Väisälä频率最大值所在深度随季节变化显著,冬季最深,6—7月则最浅。计算的线性内波相速度、频散系数和幅度放大因子的空间特征主要取决于地形变化;平方(立方)非线性系数与地形关系较小,随季节变化明显,它们主要取决于局地海洋环境特征。通过分析veKdv方程的系数特征,解释了为何在夏季南海北部最容易观测到大振幅内孤立波和在吕宋海峡以东海域难以观测到孤立波的原因。
  • Vlasenko V, Stashchuk N,Hutter K. Baroclinic Tides: Theoretical Modeling and Observational Evidence[M]. Cambridge University Press, 2005.
    Liu A K,Zhao Y H. Chapter 1. Overview of Nonlinear Internal Waves in the South China Sea[C]//Liu Antony K, Ho Chung-Ru, Liu Cho-Teng. Satellite Remote Sensing of South China Sea, 2008:1—24.
    Ramp S R, Tang T Y, Duda T F, et al. Internal solitons in the northeastern South China Sea Part Ⅰ: source and deep water propagation [J]. IEEE J Oceanic Eng, 2004, 29: 1157—1181.
    Yang Y J, Tang T Y, Chang M H, et al. Solitons northeast of Tung-sha Island during the ASIAEX Pilot Studies[J]. IEEE J Oceanic Eng, 2004, 29:1182—1199.
    Fett R W, Rabe K. Satellite observation of internal wave refraction in the South China Sea[J]. Geophys Res Lett, 1977, 4(5): 189—191.
    蔡树群, 甘子钧, 龙小敏. 南海北部孤立子内波的一些特征和演变[J]. 科学通报, 2001, 46(15):1245—1250.
    蔡树群, 龙小敏, 黄企洲. 南海北部孤立子内波生成条件的初步数值研究[J]. 海洋学报, 2003,25(4):119—124.
    Cai S Q, Long X M, Gan Z J. A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait[J]. Oceanol Acta, 2002, 25: 51—60.
    方文东, 施平, 龙小敏, 等. 南海北部孤内波的现场观测[J]. 科学通报, 2005, 50(13): 1400—1404.
    Fan Z S, Zhang Y L, Song M. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: Ⅰ. Simulation of internal tide transformation[J]. Acta Oceanologica Sinica, 2008, 27 (4): 39—56.
    Fan Z S, Zhang Y L, Song M. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea:Ⅱ.Simulation of SAR signa tures of internal solitary waves[J]. Acta Oceanologica Sinica, 2008, 27(5): 37—48.
    Hsu M K, Liu A K. Nonlinear internal waves in the South China Sea[J]. Canadian J Rem Sens, 2000, 26: 72—81.
    Klymak J M, Pinkel R, Liu C T, et al. Prototypical solitons in the South China Sea[J]. Geophys Reseh Lett, 2006, 33(11): L11607.
    Grimshaw R, Pelinovsky E, Kurkina O. Simulation of the transformation of internal solitary waves on oceanic shelves[J].J Phys Oceanogr, 2004,34: 2774—2791.
    Holloway P E, Pelinovasky E, Talipova T. A generalised Korteweg-de-Vries model of internal tide transformation in the coastal zone[J]. J Geophys Res, 1999,104 (C8): 18333—18350.
    Liu C T, Yang Y, Wang D W, et al. Chapter 2 Generation of monlinear internal waves in Luzon Strait[C]//Liu Antony K, Ho Chung-Ru, Liu Cho-Teng.Satellite Remote Sensing of South China Sea, 2008:25—45.
    Zhao Z X, Alford M H. Source and propagation of internal solitary waves in the northeastern South China Sea[J]. J Geophys Res, 111, C11012, doi:10.1029/2006JC003644, 2006.
    Orr M H, Mignerey P C. Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves[J]. J Geophys Res, 108(C3): 3064, doi: 10.1029/2001JC0011632003.
    Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea[J]. IEEE J Oceanic Eng, 2004, 29:1105—1130.
    Liu A K, Zhao Y, Tang T Y, et al. A case study of internal wave propagation during ASIAEX-2001[J]. IEEE J Oceanic Eng, 2004, 29: 1144—1156.
    Zheng Q A, Susanto R D, Ho C R, et al. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea[J]. J Geophys Res, 112, C03021, doi: 10.1029/2006JC003551. 2007.
    Cai S Q, Long X, Dong D P,et al. Background current affects the internal wave structure of the northern South China Sea[J]. Progress in Natural Science, 2008,18:585—589.
    石新刚,范植松,李培良. 正压潮流对南海东北部深水海域大振幅内孤立波影响的数值模拟[J]. 中国海洋大学学报, 2009, 39(sup.Ⅱ): 297—302.
    Fan Z S, Shi X G, Liu A K, et al. Effects of ebb and flood background currents on nonlinear internal solitary waves in South China Sea[J]. Chinese Journal of Oceanology and Limnology, in press.
    Pelinovsk Y E, Talipova T, Ivanov V. Estimations of nonlinear properties of internal wave field off the Israel coast[J]. Nonlinear Process Geophys, 1995, 2:80—88.
    Poloukhin N V, Pelinovsky E N, Talipova T G, et al. On the effect of shear currents on the vertical structure and kinematic parameters of internal waves[J]. Oceanology, 2004, 44:22—29.
    Grimshaw R, Pelinovsk Y E, Talipova T. Modeling internal solitary waves in the coastal ocean[J]. Surveys in Geophysics, 2007, 28:273—298.
    Grimshaw R, Pelinovsky E, Talipova T, et al. Internal solitary waves:propagation, deformation and disintegration[J]. Nonlinear Processes Geophys, 2010,17:633—649.
    Grimshaw R. Evolution equations for long nonlinear waves in stratified shear flows[J]. Stud Appl Math, 1985, 65:159—188.
    韩桂军,等. 中国近海及邻近海域海洋再分析技术报告[R]. 2009, 国家海洋信息中心(http://www.cora.net.cn/).
    Smith W H, Sandwell D T. Global seafloor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(19): 1957—1962.
    蔡树群,甘子钧,仇德忠. 三次样条插值在浮性频率计算中的应用[J].热带海洋,1997,16(3): 54—62.
    Cai S Q, Long X M, Wu R H, et al. Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea[J]. Journal of Marine Systems, 2008, 74(1/2): 711—720.
    Shi X G, Fan Z S. A numerical calculation method for eigenvalue problems of nonlinear internal waves[J]. Journal of Hydrodynamics, 2009, 21(3): 373—378.
    Liu C T, Pink R, Hsu M K, et al. Nonlinear internal waves from the Luzon Strait[J]. EOS, Transactions, American Geophysical Union, 2006, 87(42): 449—450.
    Broutman D, Rottman J W, Eckermann S D. Ray Methods for Internal waves in the atmosphere and ocean[J]. Annu Rev Fluid Mech, 2004, 36:233—53.
    Pelinovsk Y E, Talipova T, Stepanyant Y. Modeling of nonlinear internal wave propagation in the horizontally inhomogeneous ocean[J]. Izvestiya, Atmospheric and Oeeanic, Physics, 1994, 38:79—85.
  • 加载中
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  9
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-15

目录

    /

    返回文章
    返回