留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海浪对北太平洋海-气二氧化碳通量的影响

何海伦 李熠 陈大可

何海伦, 李熠, 陈大可. 海浪对北太平洋海-气二氧化碳通量的影响[J]. 海洋学报, 2013, 35(4): 52-63. doi: 10.3969/j.issn.0253-4193.2013.04.007
引用本文: 何海伦, 李熠, 陈大可. 海浪对北太平洋海-气二氧化碳通量的影响[J]. 海洋学报, 2013, 35(4): 52-63. doi: 10.3969/j.issn.0253-4193.2013.04.007
HE Hailun, LI Yi, CHEN Dake. Effect of wind-wave on the air-sea CO2 flux in the North Pacific[J]. Haiyang Xuebao, 2013, 35(4): 52-63. doi: 10.3969/j.issn.0253-4193.2013.04.007
Citation: HE Hailun, LI Yi, CHEN Dake. Effect of wind-wave on the air-sea CO2 flux in the North Pacific[J]. Haiyang Xuebao, 2013, 35(4): 52-63. doi: 10.3969/j.issn.0253-4193.2013.04.007

海浪对北太平洋海-气二氧化碳通量的影响

doi: 10.3969/j.issn.0253-4193.2013.04.007
基金项目: 国家自然科学基金项目(91128204;41106019);国家博士后基金项目(20100481449);国家海洋局第二海洋研究所基本科研业务费专项资助项目(GT1205)。

Effect of wind-wave on the air-sea CO2 flux in the North Pacific

  • 摘要: 利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。
  • Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean p CO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Ⅱ, 2009, 56:554-577.
    Olsen A, Wanninkhof R, Trinanes J A, et al. The effect of wind speed products and wind speed-gas exchange relationships on interannual variability of the air-sea CO2 gas transfer velocity[J]. Tellus B, 2005, 57(2): 95-106.
    Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203-215.
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research, 1992, 97: 7373-7382.
    Takahashi T, Sutherland S C, Kozyr A. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957-2010 (Version 2010)[R]. ORNL/CDIAC-159, NDP-088(V2010). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2011.
    Liss P S, Merlivat L. Air-sea gas exchange rates: Introduction and synthesis[M]// Buat-Ménard P. The Role of Air-sea Exchange in Geochemical Cycling. Berlin: Springer, 1986:113-125.
    Wanninkhof R, McGills W R. A Cubic Relationship between air-sea CO2 Exchange and Wind Speed[J]. Geophysical Research Letters, 1999, 26(13):1889-1892.
    Broecker H C, Petermann J, Siems W. The influence of wind on CO2-exchange on a wind-wave tunnel, including the effects of monolayers[J]. Journal of Marine Research, 1978, 36(4):595-610.
    Frew N M, Bock E J, Schimpf U, et al. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface films[J]. Journal of Geophysical Research, 2004, 109: C08S17, 23.
    Woolf D K. Parametrization of gas transfer velocities and sea-state-dependent wave breaking[J]. Tellus, 2005, 57B: 87-94.
    Glover D M, Frew N W, McCue S J. Air-sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series[J].Journal of Marine Systems, 2007, 66: 173-181.
    Csanady G T. The role of breaking wavelets in air-sea gas transfer[J]. Journal of Geophysical Research, 1990, 95:749-759.
    Kitaigorodskii S A. On the fluid dynamical theory of turbulent gas transfer across an air-sea interface in the presence of breaking wind-waves[J]. Journal of Physical Oceanography, 1984, 14(5): 960-972.
    Woolf D K. Energy dissipation through wave breaking and the air-sea exchange of gases[M]// Jähne B, Monahan E C.Air-Water Gas Transfer. Hanau: AEON Verlag, 1995:185-195.
    Woolf D K. Bubbles and their role in gas exchange[M]// Liss P S, Duce R A. The Sea Surface and Global Change. Cambridge: Cambridge University Press, 1997:173-205.
    Toba Y, Koga M. A parameter describing over-all conditions of wave breaking, whitecapping, sea-spray production and wind stress[M]// Monahan E C, Niocaill G M. Oceanic whitecaps. Dordrecht: D. Reidel Publishing Company, 1986:37-47.
    Zhao D L, Toba Y. Dependence of whitecape coverage on wind and wind-wave properties[J]. Journal of Oceanography, 2001, 57: 603-616.
    Zhao D, Toba Y, Suzuki Y. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter[J]. Tellus, 2003, 55B: 478-487.
    Bock E J, Hara T, Frew N W, et al. Bock Relationship between air-sea gas transfer and short wind waves[J]. Journal of Geophysical Research, 1999, 104(11): 25821-25831.
    Smethie Jr. W M, Takahashi T, Chipman D W, et al. Gas exchange and CO2 flux in the tropical Atlantic ocean determined from 222Rn and p CO2 measurements[J]. Journal of Geophysical Research, 1985, 90(4): 7005-7022.
    Upsitll-Goddard R C, Watson A J, Liss P S, et al. Gas transfer velocities in lakes measured with SF6[J]. Tellus B, 1990, 42(4): 364-377.
    Watson A J, Upstill-Goddard C R, Liss P S. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique[J]. Nature, 1991, 349: 145-147
    Qiu B. Interannual variability of the kuroshio extension system and its impact on the wintertime SST field[J]. Journal of Physical Oceanography, 2000, 30: 1486-1502.
  • 加载中
计量
  • 文章访问数:  1765
  • HTML全文浏览量:  12
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-28
  • 修回日期:  2013-05-27

目录

    /

    返回文章
    返回