留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风影响夏季长江冲淡水扩展的数值模拟研究

刘宝超 李建平 冯立成

刘宝超, 李建平, 冯立成. 风影响夏季长江冲淡水扩展的数值模拟研究[J]. 海洋学报, 2013, 35(1): 25-37. doi: 10.3969/j.issn.0253-4193.2013.01.004
引用本文: 刘宝超, 李建平, 冯立成. 风影响夏季长江冲淡水扩展的数值模拟研究[J]. 海洋学报, 2013, 35(1): 25-37. doi: 10.3969/j.issn.0253-4193.2013.01.004
LIU Baochao, LI Jianping, FENG Licheng. A modeling study of the effect of wind on Changjiang (Yangtze) River Diluted Water in summer[J]. Haiyang Xuebao, 2013, 35(1): 25-37. doi: 10.3969/j.issn.0253-4193.2013.01.004
Citation: LIU Baochao, LI Jianping, FENG Licheng. A modeling study of the effect of wind on Changjiang (Yangtze) River Diluted Water in summer[J]. Haiyang Xuebao, 2013, 35(1): 25-37. doi: 10.3969/j.issn.0253-4193.2013.01.004

风影响夏季长江冲淡水扩展的数值模拟研究

doi: 10.3969/j.issn.0253-4193.2013.01.004
基金项目: 国家自然科学重点基金"基于非均匀基流的行星波传播新理论与亚澳季风相互作用"(41030961)。

A modeling study of the effect of wind on Changjiang (Yangtze) River Diluted Water in summer

  • 摘要: 基于EFDC(Environmental Fluid Dynamics Code)数值模式建立了长江口及其邻近海域的三维水动力学模型,用于研究风对夏季长江冲淡水扩展的影响。基于实测资料的验证结果表明,模型能够比较真实的反映潮汐、海流、温度和盐度的变化过程。敏感性试验的结果显示,风对夏季长江冲淡水的扩展有着非常显著的影响。在Ekman输送的作用下,长江冲淡水将向风向的右侧扩展。5 m/s风速下,东风、东南风、南风和西南风4个风向下的冲淡水明显向外海扩展,而西风、西北风、北风和东北风下的冲淡水都被限制在近岸水域。Ekman输送的强度随风速增强而增强,冲淡水向风向右侧的扩展也越来越明显。舌轴区因为层结明显,湍流活动相对较弱,对风能量的耗散相对较小,所以相同的风速增量对舌轴区表层水的加速作用最强,这导致更多的淡水经由舌轴区输送,使得淡水舌宽度随风速的增加而变窄。对长江口海域表面风的气候统计分析表明,上述数值试验结果能够很好的解释气候态下长江冲淡水扩展方向与表面风变化的关系。
  • 毛汉礼,甘子钧,蓝淑芳. 长江冲淡水及其混合问题的初步探讨[J]. 海洋与湖沼,1963,5(3): 183-206.
    Lie H J,Cho C H,Lee J H,et al. Structure and eastward extension of the Changjiang River plume in the East China Sea[J]. Journal of Geophysical Research,2003,108(C3): 3077.
    Beardsley R C,Limeburner R,Yu H,et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research,1985,4 (1/2): 57-76.
    浦泳修,黄韦艮,许建平. 长江冲淡水扩展方向的周、旬时段变化[J]. 东海海洋,2002 (2): 1-5.
    浦泳修. 夏季长江冲淡水扩展机制的初析[J]. 东海海洋,1983 (1): 43-51.
    乐肯堂. 长江冲淡水路径的初步研究:Ⅰ.模式[J]. 海洋与湖沼,1984 (2): 157-167.
    乐肯堂. 长江冲淡水路径问题的初步研究:Ⅱ.风场对路径的作用[J]. 海洋与湖沼,1989(2): 139-148.
    赵保仁. 长江冲淡水的转向机制问题[J]. 海洋学报,1991,13(5): 600-610.
    廖启煜,郭炳火,刘赞沛. 夏季长江冲淡水转向机制分析[J]. 黄渤海海洋,2001,19 (3): 19-25.
    袁耀初,苏纪兰,赵金三. 东中国海陆架环流的单层模式[J]. 海洋学报,1982,4(1): 1-11.
    Guan B X. Major Features of the Shallow Water Hydrography in the East China Sea and Huanghai Sea[M]//ICHIYE T. Elsevier Oceanography Series;Elsevier. 1984: 1-13.
    顾玉荷. 长江冲淡水转向原因的探讨[J]. 海洋与湖沼,1985,16(5): 354-363.
    Wang W S. Yangtze Brackish water plume-circulation and diffusion[J]. Progress in Oceanography,1988,21(3/4): 373-385.
    于克俊. 长江口余流和盐度的二维数值计算[J]. 海洋与湖沼,1990,21 (1): 92-96.
    朱建荣,李永平,沈焕庭. 夏季风场对长江冲淡水扩展影响的数值模拟[J]. 海洋与湖沼,1997(1): 72-79.
    白学志,王凡. 夏季长江冲淡水转向机制的数值试验[J]. 海洋与湖沼,2003,34(6): 593-603.
    Shan F,Qiao F L,Xia C S. A numerical study of summertime expansion pattern of Changjiang(Yangtze) River diluted water[J]. Acta Oceanologica Sinica,2009,28 (3):11-16.
    Wu H,Zhu J R,Shen J,et al. Tidal modulation on the Changjiang River plume in summer[J]. Journal of Geophysical Research,2011,116,C08017.
    周锋,宣基亮,倪晓波,等. 1999年与2006年间夏季长江冲淡水变化动力因素的初步分析[J]. 海洋学报,2009,31(4): 1-12.
    Chen C C,Xue P F,Ding P X,et al. Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea[J]. Journal of Geophysical Research,2008,113(C2),C02002.
    Moon J H,Pang I C,Yoon J H. Response of the Changjiang diluted water around Jeju Island to external forcings: A modeling study of 2002 and 2006[J]. Continental Shelf Research,2009,29(13),1549-1564.
    朱兰部,赵保仁,刘克修. 黄河冲淡水转向问题的初步探讨[J]. 海洋科学集刊,1997(1): 61-67.
    庞海龙,高会旺,宋萍萍,等. 夏季珠江冲淡水扩散路径分析[J]. 海洋预报,2006,(3): 58-63.
    Shu Y Q,Wang D X,Zhu J,et al. The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model[J]. Ocean Modelling,2011,36(3/4): 228-241.
    海洋图集编委会. 渤海黄海东海海洋图集(水文)[M]. 海洋出版社,1992: 13-168.
    赵万星. 长江、嘉陵江重庆主城区段的环境流体动力学模拟. 重庆:重庆大学,2005.
    郑晓琴. 长江口及邻近海域温盐时空变化数值模拟. 上海:华东师范大学,2008.
    Ji Z G,Morton M R,Hamrick J M. Wetting and drying simulation of estuarine processes[J]. Estuarine,Coastal Shelf Sci,2001,53: 683-700.
    Ji Z G. Hydrodynamics and water quality: modeling rivers,lakes,and estuaries[M]. John Willy and Sons Inc,2008.
    Jiang H Z,Shen Y M,Wang S D. Numerical study on salinity stratification in the Oujiang River Estuary[J]. Journal of Hydrodynamics,2009,21(6): 835-842.
    Kong Q R,Jiang C B,Qin J J,et al. Sediment transportation and bed morphology reshaping in Yellow River Delta[J]. Science in China(Series E:Technological Sciences),2009,52(11): 3382-3390.
    Li X,Wang Y G,Zhang S X. Numerical simulation of water quality in Yangtze Estuary[J]. Water Science and Engineering,2009,2(4): 40-51.
    谢锐,吴德安,严以新,等. EFDC模型在长江口及相邻海域三维水流模拟中的开发应用[J]. 水动力学研究与进展:A辑,2010,25(2): 165-174.
    Xu H Z,Lin J,Wang D X. Wind impact on pollutant transport in a shallow estuary[J]. Acta Oceanologica Sinica,2008,27(3): 147-160.
    Hamrick J M. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects[M]. Virginia Institute of Marine Science,College of William and Mary,1992.
    Matsumoto K,Takanezawa T,Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan[J]. Journal of Oceanography,2000,56(5): 567-581.
    Bleck R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates[J]. Ocean Modelling,2002,4(1): 55-88.
  • 加载中
计量
  • 文章访问数:  1661
  • HTML全文浏览量:  5
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-08
  • 修回日期:  2012-05-31

目录

    /

    返回文章
    返回